How to fertilize forages for increased yields and net returns

How to fertilize forages for increased yields and net returns

Though often abused and neglected, mixed forage stands can respond to fertilization.

Stamping out swede midge?

Stamping out swede midge?

Ontario Canola Growers’ Association strongly recommended that producers avoid growing canola for three years across the New Liskeard area to suppress populations.

After the Prairie Farm Rehabilitation Centre kicked off its shelterbelt program in 1903, the Indian Head Research Station sent out more than one billion free trees to western Canadian producers.
While the benefits of cover crops for soil health have long been touted by extension staff, it’s been difficult for researchers to determine how exactly cover crops affect the soil. That is until now. In 2016, an elaborate soil health monitoring system – the first of its kind in North America – was installed at the Elora Research Station, near Guelph, Ont.
With many soybean fields across the countryside just starting to change colour, harvest is not likely to begin anytime soon. A cool, wet spring delayed soybean planting in much of the province and cooler temperatures in August and September have pushed harvest back this fall compared to the last two years. As a result, growers are wondering whether or not they will be able to get winter wheat planted at an optimum time. READ MORE
The harvest of 2016 left many fields deeply rutted from combines and grain carts running over wet land. Many farmers had little choice but to till those direct-seeded fields in an attempt to fill in the ruts and smooth out the ground. But where it was once heresy to till a long-term no-till field, a few tillage passes won’t necessarily result in disastrous consequences.
Though often abused and neglected, mixed forage stands can respond to fertilization. Still, some growers are hesitant to apply fertilizer to meet fertility needs, perhaps because forage yields tend to decline over time or because lack of spring rainfall can limit yield responses.
Across most of south-central and southeastern Ontario, there’s been 50 to 100 per cent more rain than normal,” says Scott Banks, a cropping systems specialist with the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). “It’s certainly been a challenging year. There isn’t really a silver lining to all this rain: no crops like being so wet. But growers have experienced tough years before. Outside of controlling the weather, there isn’t a whole lot they can do other than trying to minimize the issues and crossing their fingers for a warm, open fall.”
Much of our Prairie landscape has gently rolling to hummocky topography. The parent geological material on which these soils formed is often glacial till that remained after the glaciers retreated 10,000 to 12,000 years ago.
Harvest of cereal crops is nearly complete for this crop year and grain is in storage bins, waiting for delivery. While your grain is in storage, keep these methods in mind to protect its quality from insect infestations and mould.Keep grain cool. Check your temperature probes every two weeks while grain is in storage. For best results, the temperature of grain should uniform and be less than 15°C. Aerating or turning grain helps keep grain cool and dry. Hot spots in grain may be indicators of the presence of insects.Monitor moisture levels. Keep your grain at the appropriate moisture content to reduce the risk of spoilage. Moisture levels should be checked every two weeks.Spot and identify insects. When you check grain moisture and temperature, take samples from the core of your grain to monitor for insect populations. Also check the top of the grain in the bin – this is where heat and moisture collect and insects may find this very attractive. If you find insects, determine what type they are to find the best control method.Watch out for mould. Under warm, moist conditions, moulds can grow quickly and some fungi may produce poisonous mycotoxins, such as ochratoxin A. Mould may not be visible in dark grain bins or may form inside the grain bulk. A musty smell or grain clumping or caking may be signs of mould.Contact the Canadian Grain Commission's Infestation Control and Sanitation Officer for further assistance.Monitor stored grain regularly for hot spots and insect populations: insects are likely to be found in pockets of warm or moist grain sample the grain from the core at a depth of 30 to 50 centimetres (12 to 18 inches) from the surface sieve the samples or examine small portions carefully stored product insects are typically very small beetles (less than 3 millimetres or 1/8 inch) that may not be moving, so a magnifying glass can be helpful Identify insects in your grain to determine the right control method insects in your grain could be grain feeders, fungal feeders, or predators of these insects for advice on controlling grain-feeding insects, visit the Canadian Grain Commission's website For further information: Brent Elliott, Infestation Control and Sanitation Officer, Canadian Grain Commission, 204-983-3790, This e-mail address is being protected from spambots. You need JavaScript enabled to view it
Innovative research is shedding new light on grain filling in oat, including the oft-overlooked occurrence of unfilled kernels. The research has overturned some common assumptions about oat grain filling and is opening the way to faster development of higher yielding and better quality oat varieties.
A few growers in Saskatchewan are adopting intercropping systems as a way to improve yields and revenue over monocropping. Researchers at the South East Research Farm (SERF) in Redvers, Sask., are helping growers address some of their intercropping questions through small plot research and replicated trials, including demonstrations and evaluations of the potential of various crop combinations.
With a later than normal planting window and a summer growing season seemingly short on summer weather, some growers have been monitoring their corn growth stages and asking about gauging the risks associated with corn maturity and frost, particularly those who planted very late or have longer maturity hybrids. While there are still several weeks left to the growing season, a few things growers trying to gauge their crop stage for frost risk may want to consider include:Crop Staging Clearly, the closer to maturity (black layer) the crop is, the less impact a frost event will have on the crop. For quick review:The emergence of silks is the R1 stage. As a rough guideline, once pollination occurs, it takes about 60 more days for the crop to reach physiological maturity. Thus, silk timing can give a bit of an indication of when maturity of the corn crop may be expected – a crop that pollinated around July 25th may be expected to reach maturity or black layer sometime around September 25th. While there can be some small differences across hybrid maturities, hybrid maturity ratings have a much more significant impact on the length of time in vegetative stages than reproductive stages.The R2 blister stage occurs following pollination when fertilized kernels are just beginning to develop, while the R3 milk stage occurs when kernels are turning yellow and are beginning to fill with an opaque milky fluid. Grain fill is rapid by the R3 stage, and maturity under normal conditions would be 5-6 weeks away.The R4 dough stage occurs when the milk solution turns pasty as starch continues to form, with some kernels beginning to dent as dough begins to turn to hard starch at the dent ends of kernels. Under normal conditions, the dough stage may be generally 3-5 weeks from maturity.The R5 dent stage occurs when the majority of kernels have dented, and the milk line, which separates the hard starch phase from the soft dough phase, progresses from the dent end towards the cob. The dent stage may last approximately 3 weeks.The R6 maturity or black layer stage marks physiological maturity. This occurs when a small layer of cells at the base of the kernel near where the kernel connects to the cob die and turn black, which marks the end of grain fill from the cob into the developing kernel. Maximum dry matter accumulation has occurred, so any frost or stress event after this stage will have little impact on yield unless harvestability is compromised. Black layer normally forms once milk line has reach the base of the kernel, although significant stress events (extended period of very cool average temperatures, significant defoliation) can result in black layer formation before the milk line has reached the base of the kernel.Frost Severity In regards to frost severity, a light frost (ie. 0°C) may damage or kill leaves, but not be cold enough, or last long enough to actually penetrate into the stem and kill the plant. While premature leaf death limits further grain fill from photosynthesis, a living stem can still translocate dry matter to the developing grain to continue to provide some grain fill after a light frost event.In the event where temperatures are low enough (ie. -2°C), or last long enough to penetrate and kill the entire plant, there is no ability of the plant to continue filling grain, and yield at that point has been fixed.Any frost event during the blister or milk stage would result in significant grain yield losses as significant grain fill is still yet to occur at these stages.A light frost event at the dough stage may reduce yields by 35% while a killing frost may reduce yields by 55% (Lauer, 2004).Yield loss in the dent stage depends on the relative time left to mature. A light frost at the beginning of dent stage may reduce yields by 25% while a killing frost may reduce yields by 40%. During the mid-dent stage, significant dry matter accumulation has occurred, and light and killing frosts may reduce yields around 5% and 10% respectively.Estimating Time to Maturity Time required to reach maturity can be estimated by knowing the approximate Crop Heat Units (CHU) required for each reproductive corn stage. A general approximation of CHU required to complete the various R growth stages in corn is presented in Table 1. Scouting corn for the crop stages described above and referring to Table 1 will give an indication of how many CHU are required for the corn crop to reach maturity. Table 1 Table 1 Table 2 Table 2   View the embedded image gallery online at: https://www.topcropmanager.com/index.php?option=com_k2&view=latest&layout=latest&Itemid=1#sigProGalleria279aaa4a46 Comparing the estimated CHU required from Table 2 to an estimated number of CHU available until typical first frost date gives an idea of how much CHU would be available in an “average” year, and how close to maturity the crop may be for the average expected first frost date. Typical first killing frost dates based on 30 year climate normal across a selection of locations in the Province are presented in Table 2, while CHU values can be estimated through calculation tables in the Field Scouting chapter of Pub 811 Agronomy Guide for Field Crops, or through other weather information providers such as Farmzone.com or WeatherCentral.ca. This Report includes data from WIN and Environment Canada
Crowds, new ideas, research and equipment – something’s going on with cover crops in Ontario.
Corn and soybean growers in Canada have a new tool in the fight against tough and resistant weeds. ZIDUA™ SC is a new Group 15 herbicide from BASF that contains the active ingredient pyroxasulfone."BASF focuses on providing Canadian growers with tools that support current and emerging resistance challenges," said Deven Esqueda, Crop Manager, Corn and Soybeans for BASF. "ZIDUA SC, backed by ten years of research, allows growers to add residual Group 15 activity to their weed management strategy and become less reliant on glyphosate."Recently registered by the Pest Management Regulatory Agency, ZIDUA SC herbicide will be available for use in the 2018 season. ZIDUA SC is currently labelled for use in herbicide-tolerant soybeans and field corn.ZIDUA SC is a stand-alone solution and can also be tank-mixed with glyphosate, ERAGON®LQ, MARKSMAN® or ENGENIA™ in Eastern Canada, and HEAT® LQ, ENGENIA™ or ARMEZON® in Western Canada, to provide multiple modes of action for resistance management.Resistance has been increasing across Canada in pigweed species, including waterhemp and redroot pigweed. A study by the Canadian Journal of Plant Science states glyphosate-resistant waterhemp was first identified in Ontario in 2014. In Alberta, Group 2-resistant redroot pigweed was identied by Agriculture and Agri-Food Canada in 2010.The residual Group 15 activity in ZIDUA SC helps to inhibit early root and shoot growth in these tough to control weeds, maximizing corn and soybean yield through the critical period for weed control. ZIDUA SC also provides flushing control of barnyard grass, crabgrass, green and yellow foxtail, common waterhemp and redroot pigweed.For more information on ZIDUA SC herbicide, contact AgSolutions® Customer Care at 1-877-371-BASF (2273), or visit agsolutions.ca. Always read and follow label directions.
The U.S. environmental agency is considering banning sprayings of the agricultural herbicide dicamba after a set deadline next year, according to state officials advising the agency on its response to crop damage linked to the weed killer.Setting a cut-off date, possibly sometime in the first half of 2018, would aim to protect plants vulnerable to dicamba, after growers across the U.S. farm belt reported the chemical drifted from where it was sprayed this summer, damaging millions of acres of soybeans and other crops.A ban could hurt sales by Monsanto Co (MON.N) and DuPont which sell dicamba weed killers and soybean seeds with Monsanto’s dicamba-tolerant Xtend trait. BASF (BASFn.DE) also sells a dicamba herbicide.It is not yet known how damage attributed to the herbicides, used on Xtend soybeans and cotton, will affect yields of soybeans unable to withstand dicamba because the crops have not been harvested.The Environmental Protection Agency (EPA) discussed a deadline for next year’s sprayings on a call with state officials last month that addressed steps the agency could take to prevent a repeat of the damage, four participants on the call told Reuters.It was the latest of at least three conference calls the EPA has held with state regulators and experts since late July dedicated to dicamba-related crop damage and the first to focus on how to respond to the problem, participants said.A cut-off date for usage in spring or early summer could protect vulnerable plants by only allowing farmers to spray fields before soybeans emerge from the ground, according to weed and pesticide specialists.Monsanto spokeswoman Christi Dixon told Reuters on Aug. 23, the day of the last EPA call, that the agency had not indicated it planned to prohibit sprayings of dicamba herbicides on soybeans that had emerged. That action “would not be warranted,” she said.The EPA had no immediate comment.EPA officials on the last call made clear that it would be unacceptable to see the same extent of crop damage again next year, according to Andrew Thostenson, a pesticide specialist for North Dakota State University who participated in the call.They said “there needed to be some significant changes for the use rules if we’re going to maintain it in 2018,” he said about dicamba usage.State regulators and university specialists from Arkansas, Missouri, Illinois, Iowa and North Dakota are pressuring the EPA to decide soon on rules guiding usage because farmers will make planting decisions for next spring over the next several months.Tighter usage limits could discourage cash-strapped growers from buying Monsanto’s more expensive dicamba-resistant Xtend soybean seeds. Dicamba-tolerant soybeans cost about $64 a bag, compared with about $28 a bag for Monsanto’s Roundup Ready soybeans and about $50 a bag for soybeans resistant to Bayer’s Liberty herbicide.Already, a task force in Arkansas has advised the state to bar dicamba sprayings after April 15 next year, which would prevent most farmers there from using dicamba on Xtend soybeans after they emerge.Arkansas previously blocked sales of Monsanto’s dicamba herbicide, XtendiMax with VaporGrip, in the state.“If the EPA imposed a April 15 cut-off date for dicamba spraying, that would be catastrophic for Xtend - it invalidates the entire point of planting it,” said Jonas Oxgaard, analyst for investment management firm Bernstein.Monsanto has projected its Xtend crop system would return a $5 to $10 premium per acre over soybeans with glyphosate resistance alone, creating a $400-$800 million opportunity for the company once the seeds are planted on an expected 80 million acres in the United States, according to Oxgaard.By 2019, Monsanto predicts U.S. farmers will plant Xtend soybeans on 55 million acres, or more than 60 percent of the total planted this year. READ MORE 
Bumblebees are less able to start colonies when exposed to a common neonicotinoid pesticide, according to a new University of Guelph study.
Building off several research studies over the last decade, research scientist Cecil Vera at Agriculture and Agri-Food Canada (AAFC) in Melfort, Sask., wanted to narrow down the fungicide application window for control of pasmo disease in flax and investigate the effectiveness of fungicides in reducing the impacts of the disease. Graduate student Tonima (Trisha) Islam summarized the results of the three-year study that ran from 2014 through 2016 under the supervision of Randy Kutcher, an associate professor in the department of plant sciences at the University of Saskatchewan.“Not much research has been done on the effect of fungicides on the pasmo disease in Saskatchewan and Alberta,” Islam says. “I think these new findings will help flax growers understand how to control the disease.”The research compared three fungicides and three application timings to measure the effect of pasmo disease severity, crop maturity, seed yield, thousand seed weight and test weight of CDC Bethune flax. Trial locations were at Vegreville, Alta., Melfort and Saskatoon, Sask., and Brandon, Man. The fungicides Headline EC (pyraclostrobin), Priaxor (pyraclostrobin + fluxapyroxad) and Xemium (fluxapyroxad) were applied; currently only Headline and Priaxor are registered on flax for control of pasmo.Fungicide application timing was at early flower (BBCH 61) and mid-flower (BBCH 65), and a dual application was made at both early and mid-flower. Applications were compared to a control without fungicide application.Islam found all fungicides reduced disease severity, but Xemium was the least effective. With respect to timing, fungicide application at the early stage was the least effective. There was no difference in disease severity between the mid-flower application stage and the dual fungicide application.Priaxor had significantly higher yield compared to the control and other fungicides. Priaxor increased seed yield approximately 25 per cent (2,295 kilograms per hectare, or kg/ha) compared to the control (1,822 kg/ha), followed by Headline at 19 per cent (2,172 kg/ha) and Xemium at 18 per cent (2,159 kg/ha). No significant difference was observed between Headline and Xemium.Effect of the Xemium (fluxapyroxad), Headline (pyraclostrobin) and Priaxor (pyraclostrobin + fluxapyroxad) on seed yield of flax at Brandon, Melfort, Saskatoon and Vegreville in 2014, 2015 and 2016Source: Islam et al., University of Saskatchewan.However, the Priaxor treatment delayed maturity by five days, which could present a risk to seed quality in some years. The dual fungicide application also delayed maturity by five days. This delay in maturity may be a result of the effectiveness of the fungicide treatment – pasmo often results in premature ripening and earlier harvests. Earlier seeding may help to offset the delayed maturity.Priaxor increased seed yield approximately 25 per cent compare to the control.Timing of application and the impact on seed yield was also significant compared to the control. Applying fungicide at both the early and mid-flower stages increased seed yield approximately 25 per cent (2,273 kg/ha) compared to the control (1,822 kg/ha), followed by mid-flower timing at 21 per cent (2,210 kg/ha) and early flower timing at 17 per cent (2,143 kg/ha). Yield at the mid-flower application timing was not significantly different from either the dual application or the early flower application, but there was a significant difference between early and dual timings.Effects of fungicide application timings (early, mid and both stages) on seed yield of flax at Brandon, Melfort, Saskatoon and Vegreville in 2014, 2015 and 2016Source: Islam et al., University of Saskatchewan.In terms of thousand seed weight and test weight – proxies for seed quality – the mid-flower and dual treatment increased TKW and test weight.Even though the dual application provided the highest yield, economically, the net return on a second application may not make sense. “With the yield increases we have seen in Trisha’s trial and my previous experience in Melfort in the 2000s, I think two applications would rarely, if ever, be economically beneficial, based on current yields and prices for the fungicide and flax,” Kutcher says.Making the application decisionBasing a fungicide application on the presence of the disease is difficult. Vera says that while there are cases in which pasmo may appear early in the season, in most instances the evidence of pasmo symptoms appear later in the season, and by then, it would be too late to spray.“Usually, conditions for pasmo infection differ from year to year and from location to location, which was quite evident in this study. I think the best strategy would be to protect the crop with the best and most economical recommendations and hope for good results,” Vera says.This means a farmer should base their decision to spray a fungicide on environmental conditions coupled with previous experience with pasmo, flax frequency in the rotation and proximity to adjacent flax stubble.Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
All soils are not equal. Rich loams support the world's most productive agricultural regions, including swaths of the American Midwest. But in some parts of the Midwest, including areas in Missouri and Illinois, claypan soils dominate. And where claypans reign, problems for producers abound. New research from the University of Missouri could help claypan farmers improve yields while saving costs. | READ MORE
There are both environmental and agronomic concerns surrounding the management of livestock manure. The major environmental concerns are: potential risk of nutrient accumulation in soil – particularly nitrogen (N) and phosphorus (P) – and risk of nutrient movement into surface or groundwater. Poor manure management can also cause accumulation of salts in soil, surface water or groundwater and pathogenic micro-organisms in surface water.
Research trials in the U.S., and more recently at the University of Saskatchewan, are proving what’s old is new again. In this case, the use of “old” herbicides such as Avadex, Fortress and Edge are making a comeback of sorts in a weed management system that’s been dubbed “herbicide layering.” According to Clark Brenzil, who coined the term, herbicide layering is simply utilizing two to three herbicides in sequence to tackle tough-to-control weeds and to stave off weed resistance.Indeed, herbicide tank mixtures and/or a program that utilizes a residual product in a sequential program are now the recommended practice for delayed herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide,” Brenzil notes. “Wild oats and cleavers are two great examples of this.” But even simply switching one herbicide out for another, ie. rotating herbicides, while perhaps delaying the onset of herbicide resistance, still results in selection pressure. Today, many in the industry are starting to stress the importance of using multiple modes of action and tank mixing. “The extension message is to use multiple modes of action together in weed control programs,” says Mike Grenier, Canadian development manager with Gowan. “But it’s not only using tank mixes – it’s using products in sequence, for instance to look at the soil residual herbicides as part of this management program.” The idea is simple: apply different modes of action within a season – layering – and rotate chemistries through the crop rotation. As it turns out, Avadex, Edge and Fortress herbicides fit very well into this strategy. “In our scenario, you would have Group 8, Avadex or Fortress, being soil applied either in the fall or in the early spring followed with a post-emergent program during the growing season,” Grenier notes. “So in this case of Group 1 or Group 2 product use, Avadex is the pre-emergent layer providing resistance management against wild oats.” In trials, Gowan maintains that Avadex and Fortress can provide about 90 per cent control of wild oat, while Edge (Group 3) provides 70 to 80 per cent suppression. “Then you have a post-emergent program working on a much lower level of [weed] population, so lower selection pressure. So now we have the control level approaching close to 100 per cent.” Studies find an added bonusLed by Christian Willenborg, weed scientists at the University of Saskatchewan (U of S) have been conducting research to determine if herbicide layering proves beneficial. “We have some good information in peas and some really good information in canola,” says Eric Johnson, U of S research assistant. “Graduate student Ian Epp’s research in canola showed some benefits, even with Roundup Ready canola, to be using clomazone pre-emergent to improve cleavers control.” In the studies on cleavers weed control in canola, the researchers used three different modes of action – applying clomazone pre-emergent, then followed by either Clearfield, Roundup or Liberty tank mixed with quinclorac. “Even with the Roundup system, which is already pretty effective on cleavers, we found that using three different modes of action provided weed control benefits, and some yield benefits which totally surprised us,” Johnson notes. (See Fig. 1.) The team also did studies on managing Group 2 resistant cleavers in field pea. “What we found was that if we put a pre-emergent down, that suppressed the cleavers somewhat. But then we came in and followed with a post-emergent, and we ended up with better than 80 per cent control.” (See Fig. 2.) Going forward, the U of S is starting some work on managing Group 2-resistant wild mustard and Group 2-resistant kochia in lentil. The big pictureBrenzil says herbicide layering has some merit for everyone. “What the U of S research has found is that if you have control taking place right at the point where the weed is germinating [with the pre-emergent], you’re going to get better yield response out of your crop, rather than waiting for the three- or four-leaf stage when there’s already been some competitive effect of that weed on that crop,” he notes. “By having a soil active, even if it’s not doing a fantastic job of controlling the weeds, it’s suppressing the influence of those weeds on that crop, and you’re getting a bit of a yield bump by having herbicide in the soil along with your foliar product that’s coming a little later.” An added bonus, Brenzil adds, is that by using a herbicide layering program, you’re making a pre-emptive strike against herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide for effective management, such as wild oats and cleavers.” At the Herbicide Resistance Summit held March 2 in Saskatoon, Jason Norsworthy made a comment about the “treadmill” of using one weed chemistry and the very real threat of developing herbicide resistance as a result. Brenzil explains: “If you use one chemistry to death and then you allow your weed populations to get very high again, then you’re just starting from square one to select for the next Group that you’ll overuse, and so on and so on, until you paint yourself into a corner and there are no herbicide options left. At this point, the only management option left will be seeding the field to a forage crop and cut for hay until the seedbank is exhausted.” With herbicide layering, “If you’ve got your soil active products on the ground, then you come in with your foliar and you’ve got a mix of two foliars that could still control that same weed – now you have three active in there of different families,” he adds. “You avoid that overuse and you don’t allow selection pressure to accumulate.”   This story originally appeared in the June 2016 issue of Top Crop Manager West.
With the confirmation of glyphosate-resistant (Group 9) kochia across the Prairies, a renewed focus on best chemfallow management practices is needed.
Is there an interaction between seeding rate of pea and lentil, disease incidence, and fungicide effectiveness? This question was the driving force behind an Agricultural Demonstration of Practices and Technologies (ADOPT) Program project.
Using several herbicides with multiple modes of effective action are essential in combatting resistance, minimizing the weed seedbank and preparing fields for success. A planned herbicide program using multiple modes of action is the best strategy for these tough-to-control weeds. An herbicide that offers multiple modes of action to help manage a variety of broadleaf weeds that can also be used in various tank-mixes to control glyphosate-resistant species will help address the challenges of weed resistance in both the current and future growing seasons. For example, last year, a group of growers in Eastern Canada tested Armezon PRO, a new Group 15 and Group 27 herbicide. With a wide application window from early post-emergence to the eight-leaf stage in glyphosate-tolerant corn and the ability to easily tank-mix with additional products, growers were able to customize their weed management to meet their needs. When tank-mixed with atrazine in glyphosate-tolerant corn, Armezon PRO provides four modes of action. Customizing weed management strategies is especially useful when weather prevents getting into the field for a pre-emergent application. Managing problem weeds with multiple modes of action provides residual activity, reducing the weed seedbank and setting up fields for the next season. 
With the 2017 growing season upon us, here’s a look at the latest seed treatments, foliar fungicides and label updates. Product information is provided to Top Crop Manager by the manufacturers.
Premier Tech, an international leader in active ingredients for sustainable agriculture and horticulture, will take the lead in the final steps to bring to full scale the manufacturing and commercialization of a selective bioherbicide. In January, the Horticulture and Agriculture Group signed a license agreement with Agriculture and Agri-Food Canada (AAFC) to finalize the development and commercialization of a product formulated from an indigenous fungus (Phoma macrostoma). Over nearly ten years, the federal department invested millions of dollars in research on this fungus and its compounds (macrocidins), which can eliminate broadleaved weeds, particularly dandelions. This breakthrough discovery has been patented in several countries and is commercially registered in the U.S. and Canada.
The amount of debt Canadian farmers collectively carried relative to the value of their assets increased in 2016 for the first time since 2009, putting operators at heightened risk of going out of business should the next two or three years treat them poorly.Further, roughly 70 per cent of farm assets are tied up in land. The value of land is expected to continue to climb but not as fast as it has in the past, according to Farm Credit Canada (FCC), the country's largest agricultural lender.While FCC is confident the industry's financial resilience remains healthy, many challenges remain: Interest rates are rising, growth in farm revenue is sliding and the Canadian dollar is strengthening. And farmers have not paid down any of their collective debt since the early 1990s. This means some agricultural producers across the country could hit a financial crisis if an extended stretch of unfavourable weather or volatile markets hammered the industry.Drought in large swaths of Western Canada, coupled with excess moisture in the East, are expected to hurt this year's farm income. Agricultural producers will be able to handle this year's bumps, but need a cushion in case more "shocks" are in the cards, according to J.P. Gervais, the FCC's chief agricultural economist. READ MORE
The Canada and Manitoba governments have invested more than $880,000 in environmentally-focused projects to improve and protect Manitoba's landscape in partnership with conservation districts and farmers, Federal Agriculture Minister, Lawrence MacAulay, and Manitoba Agriculture Minister, Ralph Eichler, announced today.A total of 23 projects will receive funding from Growing Forward 2's Growing Assurance – Ecological Goods and Services (EG&S) to enhance riparian areas, build water retention structures, protect sensitive lands with perennial cover and establish grassed waterway buffers. Funding is provided to Manitoba's conservation districts, which then work with local agricultural producers to complete the projects.Manitoba Agriculture estimates every dollar spent on environmental projects creates a $3 economic spin-off through material purchases, use of local contractors, skilled labour and tax revenues."The Government of Canada is proud to partner with Manitoba Agriculture, conservation districts and farmers to support environmental practices to increase productivity and profitability in the agriculture sector and reduce negative impacts on the environment. Investments in initiatives like these not only support long-term prosperity for our farmers, but help improve the health of our ecosystems for future generations," said Lawrence MacAulay, Minister of Agriculture and Agri-Food.
The Canadian Agri-Food Policy Institute (CAPI) and the Canada Institute of the Wilson Center are pleased to co-publish a short piece on approaches to food safety co-operation in Canada and the United States. With NAFTA renegotiation talks in full swing, it is a critical time for a conversation on protecting and improving our shared food supply chain. As think tanks and think networks, CAPI and the Wilson Center know the importance of good debate and a robust marketplace for ideas. This short piece, written by Rory McAlpine and Mike Robach, encourages just such debate."The contents of the piece represent an opportunity for our two organizations to present to our respective stakeholders on the frontlines of Canada-US economic policy some new thinking on important food safety issues," said Don Buckingham, President & CEO of CAPI. "Food safety is not just about consumer protection, it's about enhancing the competitiveness of the Canada-US agri-food supply chain around the world. A well-functioning food safety regime helps to increase global demand for safe and wholesome North American food products."Laura Dawson, Director of the Canada Institute of the Wilson Center added: "During a period of trade upheaval and fractured supply chains, it is particularly important to bring practical suggestions to the table that will build trade, increase competitiveness and safeguard the protection of consumers."The short piece is available here: Risk and Reward: Food Safety and NAFTA 2.0
Collaboration, communication and co-ordination are front and centre as Canadian Pacific prepares to deliver best-in-class service in the 2017-18 crop year.
The Canadian Federation of Agriculture (CFA), the American Farm Bureau Federation (AFBF) and Consejo Nacional Agropecuario (CNA) have sent a joint letter to Canadian, American and Mexican government officials, reiterating their calls that re-negotiations of the North American Free Trade Agreement (NAFTA) should aim to modernize the agreement, rather than dismantle it.
The Canadian Agricultural Human Resource Council (CAHRC) recently held an AgriWorkforce Roundtable to discuss challenges and possible solutions to address the critical agricultural labour shortage in Canada.
Canada and the United States (U.S.) benefit from a long-standing history of bilateral cooperation, especially in agricultural trade. The Government of Canada is working closely with the U.S. Administration, as well as state and local officials, to strengthen the robust Canada-U.S. partnership and to ensure continued support for millions of trade-dependent middle-class jobs on both sides of the border.As part of these efforts, Minister Lawrence MacAulay travelled to Oregon and Idaho to promote the benefits of agricultural trade. The Minister's first stop was in Portland, where he took part in the Pacific Northwest Economic Region (PNWER) Summit, an annual event that brings together state and provincial representatives, as well as industry stakeholders, to discuss opportunities for growth and cooperation within the region. At PNWER, Minister MacAulay delivered a keynote address where he highlighted the almost $12 billion in Canada-U.S. agriculture and agri-food trade generated by PNWER member states and provinces in 2016.The Minister also participated in the summit's feature agricultural session, where he emphasized that nearly nine million U.S. jobs depend on trade and investment with Canada. While in Portland, the Minister also got a first-hand look at the value of the Canada-U.S. integrated supply chain, touring the Canpotex facility at the Port of Portland, and visiting a local brewery that uses Canadian ingredients in several of its beers.Minister MacAulay's next stop was Sun Valley, Idaho, where he gave a keynote address and met with state officials and industry representatives at the annual meeting for the Western Association of State Departments of Agriculture (WASDA). His final stop was in Boise, where he discussed bilateral agricultural trade opportunities with key members of the Idaho business and agriculture community.
Industry leaders met with federal, provincial and territorial (FPT) agriculture ministers to discuss Canada’s next agriculture policy framework, creating a national food policy and North American Free Trade Agreement negotiations during the Canadian Federation of Agriculture's annual industry-government FPT roundtable in St. John’s on July 19.
The Canadian Grain Commission is reducing user fees for official grain inspection and official grain weighing services and eliminating two supplementary fees for overtime related to official grain inspection services.
Canada’s minister of agriculture and his Mexican counterpart say they’re looking to increase trade between the two countries despite concerns the U.S. wants to review the North American Free Trade Agreement (NAFTA).“[There’s] many products they can produce on the fresh market side, and others that we need in this country, and there’s many products we have like canola and other products we want to export to Mexico. And that’s what we’re working on today,” said Agricultural Minister Lawrence MacAulay, after meeting with Mexico’s agriculture secretary. | READ MORE
Agri-food stakeholders from across the value chain are invited to attend the second annual National Environmental Farm Plan (NEFP) Summit in Ottawa, November 1-2, 2017. As Co-Chair of the NEFP steering committee, the Canadian Federation of Agriculture (CFA) encourages producers and farm groups to be part of this initiative that seeks to harmonize the many different environmental farm plan programs in Canada.An Environmental Farm Plan (EFP) is a voluntary, whole-farm, self-assessment tool that helps farmers and ranchers identify and build on environmental strengths, as well as mitigate risks on their operations. A National EFP (NEFP) would not be a replacement program, but rather a harmonization effort across the existing EFP programs nation wide.Building on an inaugural event held last year, summit attendees will further develop a national standard designed to connect environmentally sustainable practices at the farm level with global food buyers' growing need to source sustainable ingredients.The NEFP program is well into development, led by a steering committee comprised of participants from across the agri-food value chain. Four sub-committees are working toward developing a national protocol as it relates to data collection, standards and verification, all of which will be supported through comprehensive communications and stakeholder outreach. Summit attendees will hear from each committee, along with subject matter experts, about the progress to-date - information that will further guide steps toward this national standard.Learn more and register for the 2017 National EFP Summit by visiting nationalefp.ca. The NEFP is always seeking to add to its list of stakeholders involved in shaping this made-in-Canada solution. Interested organizations should contact co-chairs Drew Black or Paul Watson.
Canada and the European Union have finally agreed on a date for provisional application of the oft-delayed Comprehensive Economic and Trade Agreement.The provisional application of the massive deal will come into effect on Sept. 21, according to a joint-statement from Prime Minister Justin Trudeau and Jean-Claude Juncker, president of the European Commission, issued at the G20 summit meeting in Hamburg Saturday morning. | READ MORE
In a presentation to the House of Commons Standing Committee on Transport, Infrastructure and Communities, the Alberta Wheat Commission (AWC) urged the quick passage of Bill C-49 – historic federal legislation that promises to provide long-term solutions to Canada’s grain transportation issues which have plagued the industry for decades.AWC’s presentation also recommended amendments to the legislation that would improve the effectiveness of long haul interswitching as a tool to improve railway competition. As currently proposed, AWC believes the new interswitching provisions may be less effective than those enacted under the former Bill C-30.Overall, AWC is pleased with measures in Bill C-49 – the Transportation Modernization Act, that will help correct the imbalance between the market power of railways and shippers and ensure that the cost of system failures are not passed down the supply chain to farmers.“AWC appreciates the federal government’s commitment to legislation that will improve railway competition and accountability in Canada,” said Kevin Auch, AWC Chair. “AWC has been pressing for rail reform since our organization began in 2012 and we saw the invitation to speak today as another opportunity to ensure the farmer voice is truly represented as this legislation is developed.”As a member of the Crop Logistics Working Group (CLWG), AWC also supports a series of suggested amendments that deal with more timely reporting of railway service data and requirements that the railways provide more detailed volume forecasts and operational plans to the Minister at the beginning of each crop year. The CLWG is a regular forum for grain industry stakeholders to identify supply chain challenges and commercial solutions aimed at enhancing the transparency and effectiveness of the grain handling transportation system.“We see our membership with the CLWG as an excellent opportunity to pass producer feedback directly to Minister MacAulay as it relates to grain movement by rail,” said Auch. “In providing these amendments, we hope to see long-awaited legislation that fosters growth of the agriculture sector and supports Canada’s reputation as a reliable supplier of grain to our international customers.”AWC encourages the federal government to continue the conversation with Canada’s agriculture sector as it works to develop the regulations to support the spirit and the intention of this legislation that seeks to create a more responsive, competitive and accountable rail system in Canada.
Precision mapping technology is increasingly user-friendly. In fact, Aaron Breimer, general manager of precision agriculture consulting firm Veritas Farm Business Management, says some precision map-writing software is so simple a producer can segment zones or draw a boundary around a field with little more than the click of a mouse. The challenge is that the maps are only as accurate as the information used to create them.
Plant-based sensors that measure the thickness and electrical capacitance of leaves show great promise for telling farmers when to activate their irrigation systems, preventing both water waste and parched plants, according to researchers in Penn State's College of Agricultural Sciences.Continuously monitoring plant "water stress" is particularly critical in arid regions and traditionally has been done by measuring soil moisture content or developing evapotranspiration models that calculate the sum of ground surface evaporation and plant transpiration. But potential exists to increase water-use efficiency with new technology that more accurately detects when plants need to be watered.For this study, recently published in Transactions of the American Society of Agricultural and Biological Engineers, lead researcher Amin Afzal, a doctoral degree candidate in plant science, integrated into a leaf sensor the capability to simultaneously measure leaf thickness and leaf electrical capacitance, which has never been done before.The work was done on a tomato plant in a growth chamber with a constant temperature and 12-hour on/off photoperiod for 11 days. The growth medium was a peat potting mixture, with water content measured by a soil-moisture sensor. The soil water content was maintained at a relatively high level for the first three days and allowed to dehydrate thereafter, over a period of eight days.The researchers randomly chose six leaves that were exposed directly to light sources and mounted leaf sensors on them, avoiding the main veins and the edges. They recorded measurements at five-minute intervals.The daily leaf-thickness variations were minor, with no significant day-to-day changes when soil moisture contents ranged from high to wilting point. Leaf-thickness changes were, however, more noticeable at soil-moisture levels below the wilting point, until leaf thickness stabilized during the final two days of the experiment, when moisture content reached 5 percent.The electrical capacitance, which shows the ability of a leaf to store a charge, stayed roughly constant at a minimum value during dark periods and increased rapidly during light periods, implying that electrical capacitance was a reflection of photosynthetic activity. The daily electrical-capacitance variations decreased when soil moisture was below the wilting point and completely ceased below the soil volumetric water content of 11 percent, suggesting that the effect of water stress on electrical capacitance was observed through its impact on photosynthesis."Leaf thickness is like a balloon—it swells by hydration and shrinks by water stress, or dehydration," Afzal said. "The mechanism behind the relationship between leaf electrical capacitance and water status is complex. Simply put, the leaf electrical capacitance changes in response to variation in plant water status and ambient light. So, the analysis of leaf thickness and capacitance variations indicate plant water status—well-watered versus stressed."The study is the latest in a line of research Afzal hopes will end in the development of a system in which leaf clip sensors will send precise information about plant moisture to a central unit in a field, which then communicates in real time with an irrigation system to water the crop. He envisions an arrangement in which the sensors, central unit and irrigation system all will communicate without wires, and the sensors can be powered wirelessly with batteries or solar cells."Ultimately, all of the details can be managed by a smart phone app," said Afzal, who studied electronics and computer programming at Isfahan University of Technology in Iran, where he earned a bachelor's degree in agricultural machinery engineering. He is testing his working concept in the field at Penn State.Two years ago, he led a team that won first place in the College of Agricultural Sciences' Ag Springboard contest, an entrepreneurial business-plan competition, and was awarded $7,500 to help develop the concept.Growing up in Iran, Afzal knows water availability determines the fate of agriculture. In the last decade, the Zayandeh River in his home city of Isfahani has dried up, and many farmers no longer can plant their usual crops. "Water is a big issue in our country," said Afzal. "That is a big motivation for my research."Afzal's technology is very promising, noted Sjoerd Duiker, associate professor of soil management, Afzal's adviser and a member of the research team. Current methods to determine irrigation are crude, while Afzal's sensors work directly with the plant tissue."I believe these sensors could improve water-use efficiency considerably," Duiker added. "Water scarcity is already a huge geopolitical issue, with agriculture responsible for about 70 percent of world freshwater use. Improvements in water use efficiency will be essential."In a follow-up study, Afzal has just finished evaluating leaf sensors on tomato plants in a greenhouse. The results confirmed the outcomes of the just-published study. In his new research, he is developing an algorithm to translate the leaf thickness and capacitance variations to meaningful information about plant water status.
Grain conditioning is a widely used term that can be used to identify situations where either aeration or natural air drying is being utilized. Knowing the difference between aeration and natural air drying will aid in selecting aeration systems, equipment, and storage that will best suit your needs.
For the tractor-mounted sprayer market for 2017, John Deere introduces the Frontier LS11 Series 3-point Mounted Sprayers. These economical, efficient sprayers are ideal for making spray applications to pastures, small or large fields, road ditches, fence rows, specialty crops and for other types of crops and field uses.The LS11 Series Sprayers have many features of the larger pull-type sprayers, including breakaway booms, manual and automatic controls and optional foam marker systems, that help operators reduce skips and overlaps.The Frontier LS11 Series Sprayers come in four different boom-width models, from 25-ft. to 40-ft., that customers can select from based on their application needs. The LS11 Series Sprayers are available in two tank sizes, 250-gallon or 300-gallon; can be powered either hydraulically or by the rear power take-off (PTO); and are Category 2 or Category 3 quick-hitch compatible. For greater convenience, the heavy-duty poly tanks are specifically designed with a tear-drop shape to allow liquid to more completely drain from the sprayers.Additional standard features of the LS11 Series Sprayers include a handheld spray wand to reach small or hard-to-access areas; integrated parking stand and fork-lift pockets to make hook up, moving and loading the sprayer easier; and wet booms that extend the life of sprayer hardware. All models come with a single nozzle body; however, a triple nozzle body is available on the 40-ft. boom sprayer.For more information on the new Frontier LS11 Series 3-point Mounted Sprayers from John Deere, see your local John Deere dealer.
The most advanced grain harvesting technology from front to back is featured in the combines and headers John Deere is introducing for model year 2018 production. This includes four new S700 Combine models (S760, S770, S780 and S790) that offer producers significant improvements in “smart” technology, improved operator comfort and better data, along with the 700C/FC Series Corn Heads and 700D Drapers for more efficient grain harvesting.Building on the proven field performance of the S600 Combines introduced in 2012, the new S700 Combines incorporate the latest in automated harvesting technology. Many of these changes make it easier on the operator by allowing the combine to make needed adjustments automatically, on the go.To make it easier for operators to maximize the performance of their new S700 Combine, John Deere introduces the Combine Advisor package. Combine Advisor incorporates seven technologies to help operators set, optimize and automate the combine for the most effective harvesting performance based on their crop and field conditions.Auto Maintain is a function within Combine Advisor that is supported with ActiveVision cameras.Another addition to the S700 Combines is Active Yield technology that automatically calibrates the mass flow sensor. This saves time by eliminating the need for manual calibrations and ensures the best data is collected.The biggest physical difference customers will see in the S700 Combines compared to previous models is in the cab. This starts with a new state-of-the-art CommandCenter, providing a common user experience across Deere’s larger tractor and self-propelled sprayer lines, that emphasizes customization and operator comfort.Machine performance features of the CommandCenter include a Gen 4 interface and monitor with 4600 processer; CommandArm and multi-function control lever with greater ergonomic design and customizable buttons; premium activation with AutoTrac, RowSense and HarvestDoc; and Extended Monitor and mobile device features. In addition, operators will find set up and start up much quicker and easier, thanks to more intuitive harvest run and setup screens.The new cabs feature either leather or cloth seats that swivel 7.5 degrees left and 15 degrees right for improved visibility; enhanced seat ventilation for greater comfort; improved seat cushion with optional leather seat; and additional grain tank mirrors for improved visibility of the grain tank.New corn head and platform, tooAlong with the S700 Combines, John Deere is introducing the 700C/FC (folding corn head) Series Corn Heads with the RowMax row unit. The RowMax row unit provides up to a 50 percent increase in the life of the row unit gathering chains and features solid-alloy bushings that reduce pin and bushing wear.The 700C/FC Series Corn Heads are available in 6- to 18- row models, in 20-, 22- and 30-inch row widths. The StalkMaster stalk-chopping option is available on all models. Folding corn heads are available on 8- and 12-row units, which allow operators to spend more time harvesting and less time and hassle disconnecting, trailering and reconnecting heads when moving from field to field.For corn growers harvesting high moisture corn, there are several enhancements available specifically tailored to better handle this demanding crop. High moisture corn enhancements on the corn head include an auger floor insert to ease crop handling and a lower auger height to minimize crop damage.For small grains, Deere introduces the 700D Rigid Draper, which provides a 20 percent increase in capacity in tough harvesting conditions over the previous model. The 700D features a top crop auger that’s 50 percent larger in diameter (now 18 inches) with heavy-duty drives, high-performance gauge wheels, and a new center section seal kit that reduces center section grain losses by up to 45 percent in canola.For more information on the new S700 Combines, 700C/FC Corn Heads, 700D Rigid Draper and other harvesting solutions from John Deere, see your local John Deere dealer.
Producers looking for an affordable vertical tillage tool that sizes and buries residue in the fall or prepares smooth seedbeds in the spring have another option: The new Frontier VT17 Series Vertical Tillage Tool from John Deere.The VT17 Series offers fore and aft leveling adjustments that can quickly be made using a simple crank system. Gang angles on the implement can be adjusted from zero to 12 degrees for less or more aggressive tillage. Operators can fine-tune the machine’s operating depth from zero to three inches using a pin-and-clip adjustment.The VT17 comes with the choice of 20-inch straight or 22-inch concave blades. Each blade type is fluted for improved residue flow, sizing, and mixing, even with aggressive gang settings. The machine’s spring-adjustable rolling baskets run perpendicular to the blade direction to break up clods and improve field leveling and seedbed uniformity.Tandem dual wheels, standard equipment on all VT17 models, are mounted on a tubular carriage frame that’s hydraulically raised and lowered. As an option, an adjustable middle breaker can be mounted between the wheels on the center frame to disrupt soil in the center-line of travel that’s left open where the front and rear gangs do not overlap.Four sizes of VT17 Series Vertical Tillage Tools are available with working widths ranging from 10 to 15 feet. Tractor horsepower requirements range from 85 to 150 horsepower depending on the width of the model it’s paired with.Frontier equipment is available exclusively at your local John Deere dealer. For more information, click here.
New Holland Agriculture has set a new World Record by harvesting 16,157 bushels of soybeans in eight hours with the CR8.90 combine. The record-breaking performance, which took place in the Bahia State of Brazil, was certified by independent adjudicator RankBrasil. The performance On record setting day, harvesting started at 10:30 am and finished at 5:30 pm, having harvested approximately 222 acres (90 hectares). CR8.90’s average throughput was 2,020 bushels/hour in a crop yielding an average of 72.6 bushels/acre, and 17 per cent average moisture content. The record-setting performance and efficiency was achieved by harvesting 73.5 bu of soybean per gallon of fuel. The CR series The CR8.90 follows the footsteps of the range topping CR10.90, which proved it is the world’s highest capacity combine when it captured the World Record for harvesting an impressive 29,321 bushels of wheat in eight hours in 2014 – a title it holds to this day. For more information on the CR series, click here.
To serve a growing farm equipment market in Eastern Canada and the United States, Väderstad Sales Inc. has opened a new office and parts distribution warehouse in Cambridge, Ont. The Swedish farm equipment manufacturer offers unique and cost effective equipment to progressive farmers in 30 countries worldwide. The new Väderstad location signals a renewed focus on the North American farm equipment market. Manufactured in Sweden, all Väderstad farm equipment is built to create optimal field conditions. Väderstad’s North American equipment lineup includes drills, planters and cultivators. Equipment models available include: Drills: Spirit, Rapid and BioDrill (attachment to convert tillage equipment into cover crop drill) Cultivation equipment: Carrier, Carrier X, Carrier L, Carrier XL, Swift, Opus, TopDown and Cultus, ranging from 3.5 m to 12 m widths Planters: Tempo planters ranging from 4-16 rows with the most versatile precision high speed lineup in the market The new Väderstad parts warehouse supports all dealers and customers across North America, including 28 Eastern Canada dealer locations. Visit vaderstad.com/ca to find your local dealer or for more information about Väderstad’s innovative farm equipment design and lineup.
Safe storage of grain on farm is a key to successful farm management. Harvested grain may be put into bins at acceptable moisture contents, but is it safe? Knowing what temperature and moisture contents are acceptable is critical for the safe storage of grain. The following information sheds some light on what to watch for in stored grain during springtime conditions. More stored grain goes out of condition or spoils due to lack of temperature control than for any other reason. It cannot be emphasized enough that the control of temperature in a bin of stored grain is absolutely critical. Geographically in Western Canada, we are located in a region where we get North America’s most severe temperature fluctuations from one season to the next. The transition between these extremes can happen rapidly or gradually. It is during these transition periods when stored grain is most at risk, due to a phenomenon called moisture migration. Moisture migration happens inside the bin when the difference in grain temperature and the outside air is the most extreme. Properly drying and cooling your grain in the fall is crucial to preserving grain quality through the fall and winter months, and well into spring. If your grain was harvested in hot, dry conditions in the fall you must be careful to bring down the temperature of that grain to enable safe storage through the winter. Likewise, if due to weather conditions at harvest time you have put your grain in the bin at a higher moisture content than usual, you must also be careful to lower the temperature to a point where you can safely store the grain over the winter. As outside temperatures begin to rise in springtime, continued monitoring of your grain bins is required. In spring, as the ambient temperature of the air outside the bin starts to warm up the bin wall also tends to warm, which in turn warms the adjacent grain. This results in the air adjacent to the bin wall warming up as well. At this point the warm air creates a moisture current that moves upward through the grain on the outside perimeter of the grain mass. As this air warms up and starts to move, it will pick up moisture from the grain and carry it upwards. As the moistened air nears the top of the bin, it moves toward the center where it encounters cooler grain temperatures. This air cools down and starts to move down the center of the bin, laden with the moisture it accumulated during the upwards cycle along the bin wall. During this part of the cycle the air starts to release this moisture. The lower the air migrates in the bin, the more moisture it will give off. Therefore, high moisture due the condensation of the cooling air occurs at the bottom center of the bin. In and around this area of high moisture you can expect grain spoilage to occur. If grain is to be stored in the bin for any length of time it is important to bring the grain temperature up to a point that will prevent the abovementioned from happening. In order to accomplish this, it is recommended that the grain temperature in the bin be raised to approximately 10 C. It is important as a producer to consult safe storage charts that will show what length of time you can store the grain at its’ current moisture and temperature, continued monitoring is vital. Aeration (warming) at this point should be accomplished with .05 to .1 cfm/ bus, and only until the desired, uniform temperature is achieved throughout the bin. From this point forward going into warmer temperatures, the temperature of the grain should be monitored throughout the summer and controlled accordingly using aeration. By utilizing aeration inside of grain bins you are able to minimize the effects of moisture migration and maximize the benefits of temperature control within your bin. In circumstances where you need to warm grain to finish drying in springtime conditions, it is recommended that the temperature be brought back up gradually. This will help preserve the quality of the grain kernel. Once the grain has been successfully dried, it is recommended that when possible the grain be cooled again to be stored at approximately 10 C. In summary, monitoring moisture and temperature conditions in your bin, and having an aeration system in place to help regulate these conditions, is key to successful grain storage.
Spraying chemicals has expanded far beyond in-crop herbicides to include fungicides, pre-harvest, and other late season applications in many fields. Challenges arise as growers transition to spraying at different times of the year and into different crops, canopy heights and densities.
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences."The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
Biofuelnet Canada (BFN) has launched a call for expressions of interest (EOI) for our proposal to the Agri-Science Cluster program of Agriculture and Agri-Foods Canada (AAFC) later this fall.Through mutual agreement, your EOI may also be used in future BFN proposals to other funding programs, including those run by the Networks of Centres of Excellence.The purpose of this new Agri-Science cluster is to engage Canada’s agricultural operators, industry, universities, government and other R&D organizations to sustainably increase food and biomass production, in the context of a changing climate.This call for EOI is focussed on advancing the emerging technologies that will help agricultural producers across Canada sustainably meet the needs of Canada’s and the world’s growing population, and provide the biomass (crop residues, purpose-grown on marginal lands, animal residues) needed by the bioenergy and bioproducts industries.The new cluster will bring together Canada’s considerable entrepreneurial and technological strengths to: Extend agricultural production to northern latitudes, by using advanced greenhouse technologies such as biomass combined heat and power (CHP) to extend the growing season, CO2 enrichment and biologicals to accelerate growth and improve stress resistance in plants being grown locally as biomass for the greenhouse operation. Increase agricultural production and reduce input costs by developing biologicals for Canadian applications on a range of important economic crops and biomass for bioenergy. The choice of biologicals must pass all government health and environmental assessment requirements. Increase agricultural production and reduce input costs by accelerating the uptake of advanced information technologies, including novel instrumentation, remote sensing, automation, precision farming, use of “big data”, artificial intelligence, Internet of Things etc., to increase the profitability of food and biomass production for the agricultural sector. Develop evidence-based agri-economic models, tools and policies to enable the agricultural sector to benefit from the emerging carbon markets. This call is open to companies incorporated in Canada at the federal or provincial levels, R&D organizations, universities, not-for-profit organizations, and individuals. Applicants are also encouraged to include self-funded participants such as municipalities, government research labs and international partners.The Agri-Science Cluster program requires that the cluster be industry-led and that industry provide 25 per cent co-funding.The deadline for the EOI is Sept. 15, 2017. Learn more here.
US researchers have maintained that miscanthus, long speculated to be the top biofuel producer, yields more than twice as much as switchgrass in the US using an open-source bioenergy crop database gaining traction in plant science, climate change, and ecology research. "To understand yield trends and variation across the country for our major food crops, extensive databases are available — notably those provided by the USDA Statistical Service," said lead author Stephen Long, Gutgsell professor of Plant Biology and Crop Sciences at the University of Illinois. He added: "But there was nowhere to go if you wanted to know about biomass crops, particularly those that have no food value such as miscanthus, switchgrass, willow trees, etc." To fill this gap, researchers at the Energy Biosciences Institute at the Carl R. Woese Institute for Genomic Biology created BETYdb, an open-source repository for physiological and yield data that facilitates bioenergy research. The goal of this database is not only to store the data but to make the data widely available and usable. | READ MORE.  
According to research by VTT Technical Research Centre of Finland, extraction with deep eutectic solvents (DESs) offer an efficient, sustainable and easy method for dissolving proteins from agrobiomass by-products. DESs are mixtures of solids that form a liquid solution at low temperatures when mixed in suitable ratios. The method has been tested on separating protein from BSG, rapeseed press cake and wheat bran, all of which contain significant amounts of protein. These food industry by-products contain significant amounts of fibre, which decreases their suitability as feed for production animals that are not ruminants. Brewer's spent grain responded best to protein separation with DES: almost 80 per cent of the protein in BSG could be separated, while conventional extraction methods can achieve no more than 40 per cent. The separation of other substances, such as carbohydrates, can be optimised through the choice of DES. This new protein enrichment method can particularly benefit breweries and animal feed producers, but there are hopes that after further research, this method could also find applications in the food industry. | READ MORE.
As OMAFRA’s industrial crop specialist based at the Simcoe Research Station, Jim Todd works with non-food crops that have a variety of industrial uses – including energy production, or as a source of specialty oils, chemicals or medicinal compounds.  Although predominantly used as an energy source, petroleum also serves as an industrial feedstock for the manufacture of many products used in daily life. For various reasons, countries around the world are searching for renewable replacements for petroleum. One promising alternative comes from the seed oils of plants. There are hundreds of different types of plant seed oils, many of which contain fatty acids that are structurally similar to those obtained from petroleum and so could be used in the manufacture of sustainable, environmentally friendly designer oils with specific end uses. Researchers from OMAFRA and the University of Guelph are currently investigating the potential of growing two unique plants, Euphorbia lagascae from the Mediterranean and Centrapalus pauciflorus from Africa, as sources of vernolic acid, a naturally occurring epoxidized fatty acid that can directly substitute for the synthetic vernolic acid made from petroleum, soy or linseed oil.  Epoxidized fatty acids are useful as raw materials for a wide variety of industrial processes including the synthesis of chemicals and lubricants.  Vernolic acid is most commonly used as a plasticizer in the manufacture of plastic polymers such as polyvinyl chloride or PVC.  The main goal of the three-year study is to test the suitability of Euphorbia and Centrapalus for commercial cultivation under Ontario’s climatic conditions. Trials to identify suitable varieties and provide information on the agronomic requirements for successful cultivation are ongoing. Other factors being evaluated include seeding practices, fertility and water requirements, harvesting methods, and weed/pest control. Oil has been extracted and analyzed to determine the range of total oil yield and vernolic acid content. Overall, both plants have performed well, but researchers have identified a few key areas that need further research.  Field germination rates remain low, indicating a need for breeding to improve this trait and efficient harvest of Centrapalus will require the development of specialized harvest and seed cleaning equipment. 
As foreign competition and falling U.S. demand are hurting American tobacco farmers, a Virginia company is preparing the crop’s second act as a biofuel. Tyton BioEnergy Systems of Danville is testing its technique for extracting the plant’s fermentable sugars on a small scale and plans to start industrial production in 2017, Peter Majeranowski, the company’s co-founder and president, said during a recent investor webinar. Tobacco has a lot to recommend it as a biofuel source. Most industrial crops are high in either sugar or oil. Tobacco has both, and Tyton’s plant breeders have doubled or tripled the content of both in the company’s specialized lines, Majeranowski says. Tobacco is relatively low in lignin, the compound that gives plants their rigidity. “It’s kind of a soft plant and requires a less aggressive or more mild process to break it down,” Majeranowski says. Easier breakdown leads to lower processing costs, he says. | READ MORE.
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Jan. 20, 2017 - The Vancouver Declaration resulting from the First Ministers' Meeting in March 2016 saw the beginning of a co-ordinated national approach to carbon risk mitigation. Buoyed by support from high-profile business groups (including key oil and gas sector leaders), the First Ministers' Meeting on Dec. 9, 2016 in Ottawa saw the adoption of the Pan-Canadian Framework on Clean Growth and Climate Change, which included several significant announcements regarding federal investment in green infrastructure, public transit, and clean technology and innovation. Canada's industrial powerhouse, Ontario, is ahead of the pack when it comes to low-carbon electricity policy, and has been for quite some time. Ten years after the launch of the province's early procurement programs for wind, solar, hydro and other forms of renewable energy, the province enjoys a vibrant renewable energy sector with leading-edge manufacturing capabilities, a coal-free electricity system, and a project development and finance sector that is active around the globe. Across the U.S. border, things have changed somewhat recently, at least, at the federal level.  | READ MORE.
Today many biofuel refineries operate for only seven months each year, turning freshly harvested crops into ethanol and biodiesel. When supplies run out, biorefineries shut down for the other five months. However, according to recent research, dual-purpose biofuel crops could produce both ethanol and biodiesel for nine months of the year – increasing profits by as much as 30 per cent. “Currently, sugarcane and sweet sorghum produce sugar that may be converted to ethanol,” said co-lead author Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “Our goal is to alter the plants' metabolism so that it converts this sugar in the stem to oil – raising the levels in current cultivars from 0.05 per cent oil, not enough to convert to biodiesel, to the theoretical maximum of 20 per cent oil. With 20 per cent oil, the plant's sugar stores used for ethanol production would be replaced with more valuable and energy dense oil used to produce biodiesel or jet fuel.” A paper published in Industrial Biotechnology simulated the profitability of Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) with 0 per cent, 5 per cent, 10 per cent, and 20 per cent oil. They found that growing sorghum in addition to sugarcane could keep biorefineries running for an additional two months, increasing production and revenue by 20-30 per cent. | READ MORE
Dec. 9, 2016 - The federal and provincial governments have teamed up to help implement a bioeconomy strategy for Northern Ontario. The two senior levels of government are providing a total of $216,792 to help put a plan into action aimed at creating new renewable energy opportunities throughout the North. Developed in 2015 by the Biomass North Development Centre, in partnership with the Union of Ontario Indians, the strategy will look to reduce policy and regulatory barriers for the industry, develop a skills and training road map for future workers and better inform the public and potential partners about biomass applications and concepts. “This is an opportunity of partnerships and benefits for all of the North,” said Dawn Lambe, the biomass development centre's executive director. | READ MORE.
Dec. 1, 2016 - An Italian company is interested in turning biomass into a new southern Alberta industry. And the Alberta government is providing the data to show what would work. Representatives from Alberta Economic Development and Trade, along with a spokesperson for Beta Renewables from Tortona, Italy, outlined the potential to Lethbridge County Council on Monday. Earlier this year, the county was one of five Alberta jurisdictions to sign onto a formal biomass mapping project across the province. The study found 12 million tonnes of biomass available annually in the form of straw and other byproducts of the region’s grain and speciality crop production – plus 633,000 tonnes of waste from livestock production. “This is good news,” Reeve Lorne Hickey said, as council members asked for more details. For Lethbridge-area farms growing flax, one councillor pointed out, it could provide a way to get rid of flax straw – too strong to be used like other straw. | READ MORE.
The president of a new farm co-op says it's working to sign up 200 to 300 members to supply corn stalks and leaves, also known as stover, as well as wheat stalks, to a proposed new plant in Sarnia, Ont., that will turn the biomass into sugar. The Sarnia Observer reports. | READ MORE
August 10, 2016 - A UBC professor’s flax research could one day help Canadian farmers grow a car fender. In a recent study, UBC researcher Michael Deyholos identified the genes responsible for the bane of many Canadian flax farmers’ existence; the fibres in the plant's stem. “These findings have allowed us to zero in the genetic profile of the toughest part of this plant and may one day help us engineer some of that toughness out,” says Deyholos, a biology professor at UBC's Okanagan campus. “With further research, we might one day be able to help farmers make money off a waste material that wreaks havoc on farm equipment and costs hundreds of hours and thousands of dollars to deal with.” As part of his research, Deyholos and his former graduate student at the University of Alberta dissected thousands of the plant’s stem under a microscope in order to identify which genes in the plant's make up were responsible for the growth of the stem, and which weren’t. Due to the length of the Canadian prairie’s growing season, where flax is grown, farmers typically burn the stems, known as flax straw, as opposed to harvesting the material. In many European countries, flax straw is used as an additive in paper, plastics and other advanced materials such as those used in the production of automobiles. Currently, Canadian flax is used only for the value of its seeds, which can be eaten or broken down into flaxseed oil. Flaxseed oil is used in the manufacturing of paints, linoleum, and as a key element in the manufacturing of packaging materials and plastics. According to the Flax Council of Canada, Canada is one of the largest flax producers in the world with the nation’s prairie provinces cultivating 816,000 tonnes of the plant in 2014/15 on 1.6 million acres of land.Deyholos’ research was recently published in the journal Frontiers of Plant Science.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine