Occasional tillage OK to get rid of ruts on long-term no-till soils

Occasional tillage OK to get rid of ruts on long-term no-till soils

Following a wet harvest, many farmers had little choice but to till those direct-seeded fields in an attempt to smooth the ground.

Winter wheat and cover crops for improved soil health

Winter wheat and cover crops for improved soil health

Long-term rotation studies show the value of using cover crops and adding winter wheat into a rotation

Intercropping trials show promise; research continuing to expand options

Intercropping trials show promise; research continuing to expand options

A few growers in Saskatchewan are adopting intercropping systems

BMPs for variable rate planting

BMPs for variable rate planting

Five tips to capitalize on variable rate planting

Crop growth and yield are strongly affected by sunlight, temperature and growing season precipitation. From a farmer’s perspective, temperature and water availability are the two most important environmental factors that affect crop production.
Researchers at the University of Guelph are finding that Ontario crops can benefit from subsurface drip irrigation. The technology (which is relatively new to the province) is a low-pressure, high-efficiency system that uses buried polyethylene drip lines to meet crop water needs by applying water below the soil surface using micro-irrigation emitters.
Two years ago, an unusually warm, dry, long fall across much of Ontario meant that wheat grew unusually big before winter freeze-up. Strong fall growth brings with it both pros and cons. While vigorous early growth can ultimately produce high yields, it also leaves plants susceptible to lodging.
If a drought occurs, you’re looking at more than 20 to 30 per cent losses in any crop. A drought-tolerant crop variety is almost like crop insurance. If you’re hit with a major drought every one out of three years, and you have drought tolerance as an added trait – along with the multiple traits in your elite canola variety – then that’s like insurance that will help protect you,” says Marcus Samuel, an associate professor at the University of Calgary.
As swede midge populations continue to rise in Quebec, canola growers are looking for better ways to manage the pest. Entomologist Geneviève Labrie is leading a two-year research project to help advance integrated management strategies for swede midge.
Narrow row spacing is considered the accepted practice for maximizing grain yields for the majority of crops under most circumstances. However, wider row spacing offers advantages for dealing with heavier and taller crop residues, and reducing equipment costs and maintenance. But how wide is too wide before yield is compromised?
When researchers at the Prairie Agricultural Machinery Institute (PAMI) heard that some producers were looking toward the practice of straight cutting shatter-resistant canola varieties, they set out to find the true post-harvest comparison of straight cut or swath.
Last year, Ontario had its first-ever detection of clubroot symptoms in canola. On the heels of that discovery came an even more unsettling surprise – a survey found the pathogen scattered across the province’s main canola-growing areas and this year, the symptoms are showing up in more fields.
Bees can provide a helping hand to farmers with a new green technology to fight against major fungal diseases such as sunflower head rot and grey mould.
Soybean acreage is continuing to expand west into Saskatchewan and Alberta. Many growers already grow glyphosate-resistant canola in rotation and are adding glyphosate-resistant soybeans as another crop in their system. However, managing glyphosate-resistant canola volunteers in glyphosate-resistant soybeans is a challenge.
Several efforts are underway to develop new tools and management strategies for blackleg disease in canola. Severe epidemics of blackleg can result in significant yield losses. Researchers have developed a new blackleg yield loss model for canola and an associated set of guidelines and recommendations for farmers and industry to help understand the economic impacts of this significant disease.
Most experts agree food production will need to double by the time Earth’s population grows to nine billion people by 2050. This is a challenge that motivates scientists the world over and Australian crop scientist and plant nutritionist Peter Kopittke is no exception.The young scientist spent a few days this past summer in the heart of Canada’s wheat belt working on the problem of aluminum toxicity in acidic soil. It’s a problem that affects wheat growers in many parts of the world although not in Saskatchewan, home to the CLS, where Kopittke spent an intense 36 hours earlier this year.Globally, it is estimated that acid soils result in more than US$129 billion in lost production annually. In Western Australia, farmers lose A$1.5 billion annually because the aluminum in the soil destroys the root system, killing the plant. For the full story, click here. 
A large, prospective cohort study conducted among agricultural workers, farmers and their families in Iowa and North Carolina in the United States reports that there are no associations between glyphosate use and overall cancer risk or with total lymphohematopoietic cancers, including non-Hodgkin lymphoma (NHL) and multiple myeloma.The long term study updated the previous evaluation of glyphosate with cancer incidence, and is part of the Agricultural Health Study (AHS), a large and important project that tracks the health of agricultural workers and their families. Led by AHS principal investigator Laura Beane Freeman, the study results state that among 54,251 applicators studied, 44,932 (82.8 percent) used glyphosate. "Glyphosate was not statistically significantly associated with cancer at any site," the study said. For the full story, click here.
Two of the most commonly used insecticides around the world are imidacloprid (neonicotinoid) and chlorpyrifos (organophosphate). In a new paper, published in the journal Scientific Reports, they have been found to be toxic to seed-eating songbirds, even affecting their migration. University of Saskatchewan biology professor Christy Morrissey stated in a press release, “Studies on the risks of neonicotinoids have often focused on bees that have been experiencing population declines. However, it is not just bees that are being affected by these insecticides.” | READ MORE
The World Health Organization’s cancer agency dismissed and edited findings from a draft of its review of the weedkiller glyphosate that were at odds with its final conclusion that the chemical probably causes cancer.Documents seen by Reuters show how a draft of a key section of the International Agency for Research on Cancer’s (IARC) assessment of glyphosate - a report that has prompted international disputes and multi-million-dollar lawsuits - underwent significant changes and deletions before the report was finalised and made public. For the full story, click here. 
Harvest quality of milling oats is very important, and growers sometimes utilize harvest aids such as pre-harvest glyphosate. A properly timed application can help growers control perennial weeds and improve crop harvestability, while meeting maximum residue limit (MRL) requirements. However, some buyers have placed restrictions on the use of pre-harvest glyphosate on oats they purchase.Christian Willenborg, associate professor with the College of Agriculture and Bioresources at the University of Saskatchewan, initiated a small study in 2015 to collect some initial research data and find a way to lend science to the decision-making process.“We were surprised at the announcement that some milling quality oats would not be accepted if treated with glyphosate, and frankly, this didn’t sit well with me. But there was no science on this and so we immediately established a one-season ‘look-see’ trial in 2015 at two locations near Saskatoon to compare different harvest systems and their effects on quality of milling oats,” he says. “We compared two different oat cultivars: CDC Dancer, a medium maturity cultivar, and AC Pinnacle, a later maturing cultivar. The oats were managed using typical agronomy practices, including a seeding rate of 300 seeds per square metre (seeds/m2) targeting 250 plants per square metre (plants/m2) and fertilized for a target yield of 150 bushels per acre.” The second factor was a comparison of three different harvest systems, including swathing at the optimum timing of 35 per cent moisture, direct combined (at approximately nine per cent seed moisture content alone and direct combined with a pre-harvest glyphosate application. The pre-harvest glyphosate was applied according to label requirements at 30 per cent seed moisture content using the recommended label rate. The project compared various harvest quality parameters, as well as functional quality characteristics and residue testing across the different treatments. Through funding from the Prairie Oat Growers Association and the Saskatchewan Agriculture Development Fund, the initial 2015 trial has been expanded into a fully funded, much larger three-year project that will involve several additional experiments. “We gained some very good insights in the initial trial, but these very preliminary results will be compared again in this larger expanded trial over the next three years. Until we get the final results at the end of 2018, these early one-season informational highlights have to be considered very preliminary,” Willenborg says. The 2015 preliminary results showed that, as expected, cultivar had an impact on all of the quality parameters, such as yield, plump kernels, 1,000 kernel weight and test weight. However, there was no cultivar by harvest system interaction – the effects of the harvest system were consistent regardless of which cultivar was planted. “The harvest system did have an impact on several of the quality parameters, however the preliminary results did not show any negative effects of a pre-harvest glyphosate application,” Willenborg explains. “In terms of yield, swathing resulted in a 15 to 18 per cent yield reduction compared to direct harvest, however some of that reduction may be a function of our plot harvesting equipment, and this may be different with field-scale grower systems. The direct harvested plots, with and without a pre-harvest glyphosate treatment, had virtually equal yield. Swathing produced the highest test weight, with direct harvest plus pre-harvest glyphosate equal to the swathing treatment; direct harvest with no glyphosate had a significant lower test weight.”The swathing treatment also produced the highest percentage of thin kernels, with direct harvest and no glyphosate intermediate and the lowest percentage of thin kernels with direct harvest plus glyphosate treatment. On the other hand, the percentage of plump kernels was the same in both direct harvest treatments, but slightly lower for the swathing treatment. Overall, the pre-harvest glyphosate reduced the percentage of thin kernels in the sample, which is a benefit for growers. “For the initial and longer term project, we partnered with Dr. Nancy Ames at Agriculture and Agri-Food Canada to compare the functional aspects of the oat cultivars under the different treatments,” Willenborg says. “Her preliminary functional test results were similar to the seed quality results, with no major impacts on functional quality among the treatments. For the glyphosate testing, we partnered with Dr. Sheryl Tittlemier at the Canadian Grain Commission to develop a glyphosate residue test for oat. Her initial test results from the 2015 treatments showed that the direct harvest plus pre-harvest glyphosate treatment did have very small levels of residues at four [parts per million], which is well below the MRL threshold levels in North America. We will continue to use this test for the larger project.”The expanded three-year study will include the same harvest treatments, with some additional trials assessing seeding rate and stand uniformity. Stand uniformity is related to the question of whether or not additional tillers in the stand may be a factor with potential glyphosate issues. The three harvest treatments will also be compared at a range of different moisture contents, from 10, 20, 30, 40, 50 and 60 per cent at the time of swathing, or direct harvest alone and direct harvest plus pre-harvest glyphosate. Willenborg will also be investigating alternative cultural and herbicide combinations for managing perennial weeds in oat. The full analysis and final project results will be available in 2019, including seed quality and functional analysis. “So far it doesn’t appear that glyphosate is having an adverse effect on oat seed quality or functionality, and if anything is showing a small quality benefit to having glyphosate applied prior to harvest,” Willenborg says. “The key is to follow the label directions for pre-harvest application and make sure the crop is at 30 per cent moisture or lower, which corresponds roughly to the hard dough stage of development. All of our research treatments have been completed according to the label, but once you get off label in terms of timing we don’t know what will happen with glyphosate residues. “For example, in some of our earlier work with lentil, the results were fine as long as label directions were followed, but as soon as application got off label in terms of timing and at higher moisture content, [that’s] where problems with quality and MRLs showed up. We expect that may be similar to oat, which is often harvested late in the season, when growers are between a rock and a hard place, with frost or heavy rains threatening harvest.”Although it can be a challenge to apply glyphosate at the proper timing, there can be serious consequences due to not adhering to the label timing. Always follow the label, and check with your grain buyer about the acceptance of all pre-harvest and other product use and MRLs for all crops, including oats.
A group of international scientists is meeting in the national capital to try to convince parliamentarians there is no longer any doubt that common agricultural pesticides are proving toxic to ordinary honey bees. Jean-Marc Bonmatin of the French National Centre for Scientific Research, represents a task force on pesticides within the International Union for Conservation of Nature, which in 2015 released a comprehensive review of more than 1,100 peer-reviewed research studies on neonicotinoids. READ MORE
Corn and soybean growers in Canada have a new tool in the fight against tough and resistant weeds. ZIDUA™ SC is a new Group 15 herbicide from BASF that contains the active ingredient pyroxasulfone."BASF focuses on providing Canadian growers with tools that support current and emerging resistance challenges," said Deven Esqueda, Crop Manager, Corn and Soybeans for BASF. "ZIDUA SC, backed by ten years of research, allows growers to add residual Group 15 activity to their weed management strategy and become less reliant on glyphosate."Recently registered by the Pest Management Regulatory Agency, ZIDUA SC herbicide will be available for use in the 2018 season. ZIDUA SC is currently labelled for use in herbicide-tolerant soybeans and field corn.ZIDUA SC is a stand-alone solution and can also be tank-mixed with glyphosate, ERAGON®LQ, MARKSMAN® or ENGENIA™ in Eastern Canada, and HEAT® LQ, ENGENIA™ or ARMEZON® in Western Canada, to provide multiple modes of action for resistance management.Resistance has been increasing across Canada in pigweed species, including waterhemp and redroot pigweed. A study by the Canadian Journal of Plant Science states glyphosate-resistant waterhemp was first identified in Ontario in 2014. In Alberta, Group 2-resistant redroot pigweed was identied by Agriculture and Agri-Food Canada in 2010.The residual Group 15 activity in ZIDUA SC helps to inhibit early root and shoot growth in these tough to control weeds, maximizing corn and soybean yield through the critical period for weed control. ZIDUA SC also provides flushing control of barnyard grass, crabgrass, green and yellow foxtail, common waterhemp and redroot pigweed.For more information on ZIDUA SC herbicide, contact AgSolutions® Customer Care at 1-877-371-BASF (2273), or visit agsolutions.ca. Always read and follow label directions.
The U.S. environmental agency is considering banning sprayings of the agricultural herbicide dicamba after a set deadline next year, according to state officials advising the agency on its response to crop damage linked to the weed killer.Setting a cut-off date, possibly sometime in the first half of 2018, would aim to protect plants vulnerable to dicamba, after growers across the U.S. farm belt reported the chemical drifted from where it was sprayed this summer, damaging millions of acres of soybeans and other crops.A ban could hurt sales by Monsanto Co (MON.N) and DuPont which sell dicamba weed killers and soybean seeds with Monsanto’s dicamba-tolerant Xtend trait. BASF (BASFn.DE) also sells a dicamba herbicide.It is not yet known how damage attributed to the herbicides, used on Xtend soybeans and cotton, will affect yields of soybeans unable to withstand dicamba because the crops have not been harvested.The Environmental Protection Agency (EPA) discussed a deadline for next year’s sprayings on a call with state officials last month that addressed steps the agency could take to prevent a repeat of the damage, four participants on the call told Reuters.It was the latest of at least three conference calls the EPA has held with state regulators and experts since late July dedicated to dicamba-related crop damage and the first to focus on how to respond to the problem, participants said.A cut-off date for usage in spring or early summer could protect vulnerable plants by only allowing farmers to spray fields before soybeans emerge from the ground, according to weed and pesticide specialists.Monsanto spokeswoman Christi Dixon told Reuters on Aug. 23, the day of the last EPA call, that the agency had not indicated it planned to prohibit sprayings of dicamba herbicides on soybeans that had emerged. That action “would not be warranted,” she said.The EPA had no immediate comment.EPA officials on the last call made clear that it would be unacceptable to see the same extent of crop damage again next year, according to Andrew Thostenson, a pesticide specialist for North Dakota State University who participated in the call.They said “there needed to be some significant changes for the use rules if we’re going to maintain it in 2018,” he said about dicamba usage.State regulators and university specialists from Arkansas, Missouri, Illinois, Iowa and North Dakota are pressuring the EPA to decide soon on rules guiding usage because farmers will make planting decisions for next spring over the next several months.Tighter usage limits could discourage cash-strapped growers from buying Monsanto’s more expensive dicamba-resistant Xtend soybean seeds. Dicamba-tolerant soybeans cost about $64 a bag, compared with about $28 a bag for Monsanto’s Roundup Ready soybeans and about $50 a bag for soybeans resistant to Bayer’s Liberty herbicide.Already, a task force in Arkansas has advised the state to bar dicamba sprayings after April 15 next year, which would prevent most farmers there from using dicamba on Xtend soybeans after they emerge.Arkansas previously blocked sales of Monsanto’s dicamba herbicide, XtendiMax with VaporGrip, in the state.“If the EPA imposed a April 15 cut-off date for dicamba spraying, that would be catastrophic for Xtend - it invalidates the entire point of planting it,” said Jonas Oxgaard, analyst for investment management firm Bernstein.Monsanto has projected its Xtend crop system would return a $5 to $10 premium per acre over soybeans with glyphosate resistance alone, creating a $400-$800 million opportunity for the company once the seeds are planted on an expected 80 million acres in the United States, according to Oxgaard.By 2019, Monsanto predicts U.S. farmers will plant Xtend soybeans on 55 million acres, or more than 60 percent of the total planted this year. READ MORE 
Bumblebees are less able to start colonies when exposed to a common neonicotinoid pesticide, according to a new University of Guelph study.
All soils are not equal. Rich loams support the world's most productive agricultural regions, including swaths of the American Midwest. But in some parts of the Midwest, including areas in Missouri and Illinois, claypan soils dominate. And where claypans reign, problems for producers abound. New research from the University of Missouri could help claypan farmers improve yields while saving costs. | READ MORE
There are both environmental and agronomic concerns surrounding the management of livestock manure. The major environmental concerns are: potential risk of nutrient accumulation in soil – particularly nitrogen (N) and phosphorus (P) – and risk of nutrient movement into surface or groundwater. Poor manure management can also cause accumulation of salts in soil, surface water or groundwater and pathogenic micro-organisms in surface water.
Research trials in the U.S., and more recently at the University of Saskatchewan, are proving what’s old is new again. In this case, the use of “old” herbicides such as Avadex, Fortress and Edge are making a comeback of sorts in a weed management system that’s been dubbed “herbicide layering.”
With the confirmation of glyphosate-resistant (Group 9) kochia across the Prairies, a renewed focus on best chemfallow management practices is needed.
Despite being at opposite ends of the planet, Canada and Australia have long been soul sisters, But it’s in agriculture where the similarities come to the fore, with very similar commodity profiles, particularly for grain, dairy and protein.And despite very different target markets, trade agreements and government attitudes, each country’s agricultural communities are after one thing — a profitable and expanding appetite for their produce. | READ MORE
A meeting of Trans-Pacific Partnership countries in Vietnam this week provides a window of opportunity for Canada to take the next step in TPP implementation, increasing the value of canola exports and benefiting the entire canola value chain. The 11 country members are meeting in Da Nang, Vietnam for the Asia-Pacific Economic Cooperation Leaders’ Week, November 6 to 11.“The canola industry is urging the federal government to advance the TPP during these discussions,” says Jim Everson, president of the Canola Council of Canada. “Implementing the TPP will increase value-added processing in Canada, maintain existing markets and ensure that Canada remains competitive to other oilseed producing countries.”The United States has decided not to proceed with TPP negotiations. However, implementing an agreement with the remaining 11 countries would provide Canadian canola a competitive advantage over competing oilseed products entering TPP countries, such as U.S. soybean oil into Japan.Japan is a long-standing and consistent market for canola seed, but tariffs of approximately 16 per cent have prevented oil exports. As agreed to during the TPP negotiations, the TPP would open new markets for value-added canola products by eliminating canola oil and canola meal tariffs and establishing more effective rules to prevent non-tariff barriers. When tariffs are fully eliminated in Japan and Vietnam over five years, exports of Canadian canola oil and meal could increase by up to $780 million per year.In addition, Australia already has a free trade agreement with Japan that is eliminating tariffs on Australian canola oil. As a result, Canadian canola oil currently faces a six per cent higher tariff than Australian canola oil – a competitive disadvantage that will grow each year that the TPP is not implemented.“Australia is able to ship value-added product to Japan, while Canada cannot,” says Everson. “Each year that passes without implementation means that Canada falls further behind our main competitor in the Asia-Pacific region – risking our current $1.2 billion annual exports to Japan.”The TPP is an important enabling step for the canola industry to increase value-added processing and productivity. The industry’s strategic plan, Keep it Coming 2025, includes the objective of nearly doubling the amount of canola processed in Canada over the next 10 years. Processing 14 million tonnes of canola in Canada requires that barriers to exporting canola oil and meal are removed – such as tariffs that the TPP would eliminate.
Colin Penner teaches farm business management at the University of Manitoba. Earlier this fall, while his family was taking off another crop of wheat, oats, canola and soybeans near Elm Creek, Man., he was beginning his fourth year of instruction.
The latest calculator was released in January and is an update on a tool called CROPPLAN Financial Analysis. It was designed by two farm management specialists from Manitoba, Roy Arnott of Killarney and Darren Bond of Teulon.
With large dollars and major tax implications hanging in the balance, farmers need to take the time to carefully weigh financing options for any and every acquisition of farm equipment. Whether you should lease or buy your next major farm purchase cannot be answered with a one-size-fits-all set of rules, says Rick Battistoni, chartered professional accountant, and a partner with MNP, a national accounting, tax and business consulting firm. Rather, he says, one’s financing decisions depend on your farm’s specific needs, priorities and financial reality.
More New Brunswick students are digging into agriculture this year thanks to the launch of the new Agriculture in the Classroom program.The program supports teachers with educational resources and provides hands-on learning experiences to students. The program is designed to connect more students with agriculture and nurture an appreciation for the nutritious food grown in the province.The Agriculture in the Classroom project will receive $60,000 from the New Brunswick Food and Beverage Strategy. It will also receive $19,900 from the Growing Forward 2 program that is cost-shared on a 60-40 basis between the federal and provincial governments. For the full story, click here. Related: Government invests over half a million dollars to develop education surrounding the agriculture sector
Following is a statement from Canadian Federation of Agriculture (CFA) President Ron Bonnett in reaction to the announcement by Prime Minister Justin Trudeau, Finance Minister Bill Morneau, and Small Business and Tourism Minister Bardish Chaggar of small business tax changes."The Canadian Federation of Agriculture (CFA) welcomes today's announcement by Prime Minister Justin Trudeau, Finance Minister Bill Morneau, and Small Business and Tourism Minister Bardish Chaggar that the 10.5 per cent small business tax rate will drop to 10 per cent in 2018 and 9 per cent in 2019.A reduced overall small business tax rate will help to drive growth in the agriculture sector and boost the competitiveness of Canadian farmers. As well, changes announced to 'Tax Planning Using Private Corporations' proposals are a positive sign that the government understands the concerns voiced by farm groups in recent months.Simplifying the income sprinkling rules is a step in the right direction and farmers look forward to more clarity around tax changes. CFA is also pleased that the government will not proceed with limiting access to the Lifetime Capital Gains Exemption.Minister Morneau has said that he'll ensure family farm transfers aren't affected by the tax changes and farm groups await details on how the proposals will be revised in this regard.While today's news resolves some uncertainty, farmers remain apprehensive about other proposed tax measures, particularly on passive investments, which are vital for managing year-over-year risks due to weather or market-related volatility. CFA has also noted concern with plans that would affect the conversion of income into capital gains.CFA executives are in regular contact with Finance Canada officials and other government representatives, and we understand these outstanding issues will be addressed in the near future."
Improving food literacy – the ability to make healthy food choices – through activities such as hands-on cooking, exposure to new foods, and farm and gardening activities can help build the skills required to plan, purchase and prepare healthier foods. These activities help encourage children to make healthy eating choices and supports healthy living.The Honourable Ginette Petitpas Taylor, Minister of Health, recently announced funding for the Farm to School: Canada Digs in! Initiative. This innovative program, launched today, aims to empower and educate students in schools and on campuses about healthy eating. She was joined by Dr. Theresa Tam, Chief Public Health Officer of Canada.Farm to School: Canada Digs in! will bring healthy, locally grown food into schools, and provide students with hands-on opportunities to learn about healthy food options, meal preparation, sustainable food systems, local food production, marketing and distribution. Program activities will allow children and youth to benefit from greater availability of healthy, local and sustainable foods in schools and on campuses across Canada. This project also supports the Government of Canada's Healthy Eating Strategy, which aims to make healthy food choice the easy choice.
Delivering grain soon? Reduce your risk of not getting paid by following these recommendations.Before you make a grain delivery, make sure you're delivering grain to a company licensed by the Canadian Grain Commission. As part of its mandate to work in the interests of grain producers, the Canadian Grain Commission requires licensed grain companies to provide security to cover money owed to producers for grain deliveries. Unregulated grains and deliveries of any grain to unlicensed grain companies aren't eligible for compensation in the event that payment terms are not met. When you make your delivery, get a primary elevator receipt, grain receipt or cash purchase ticket that identifies the grain, grade, weight, price and date of delivery. Scale tickets are not accepted for compensation claims. Make sure you ask to be paid for your grain right away. The sooner you ask to be paid, the lower your risk of payment loss. When delivering multiple loads of grain to one company, it's a good idea to ask for payment after each load or every few loads. Wait until the cheque clears before you deliver another load. If a licensed company refuses to pay you for your grain, stalls on payment, or a financial institution denies payment on your cash purchase ticket or cheque, don't make any further grain deliveries and contact the Canadian Grain Commission."Grain producers should contact the Canadian Grain Commission immediately if they experience any trouble or delays getting paid. Waiting too long could put your eligibility for compensation at risk," said Patti Miller, Chief Commissioner, Canadian Grain Commission in a press release. For more information, visit: http://www.grainscanada.gc.ca/producer-producteur/licence/risk-risque-en.htm
Farmers of North America Strategic Agriculture Institute (FNA-STAG) called on the federal government to act with rural agriculture in mind by extending the consultations on any proposed tax changes, decisions that that will have serious consequences for farm families for generations."Farm operations already contribute a fair share of needed federal tax revenue. It is critical that any proposed ideas or changes to tax law be fully exposed to genuine consultation, including impact assessments, with those most affected" said James Mann, President of FNA-STAG.To protect the future of our farms, FNA-STAG is asking for a complete stop to the process until the matter can go through full Parliamentary process.While hearings should be held by the House of Commons Finance Committee, because these changes significantly impact farm families, the Standing Committee on Agriculture should also hold hearings with relevant testimony which would provide for a more in-depth accounting of the true impact.Even before that however, the proposed changes should be brought back to the farm community to provide opportunity for meaningful discourse. Decisions without patience and attention to detail may result in irreversible consequences.False assumptions have taken over much of the discussion. The proposed changes present a complex set of scenarios that may be completely different for different farmers, and they need time to consult with their financial advisors.There is an assumption that only the rich will be impacted. Nothing could be further from the truth. This will knee-cap farmers that find making ends meet a daily challenge and penalize those who have taken the government's advice – using experts to plan for the future.Meaningful consultation, adequate research and a more deliberate targeted approach would serve all sectors much better.FNA-STAG is a not-for-profit institute that collaborates with other organizations to improve agriculture policy and regulation where it impacts directly on farm profitability. Farmers of North America (FNA) is a national farmers' business alliance, a private sector solution provider that negotiates lower input prices and develops programs for farmer members to maximize their profitability.
A cash advance from the Canadian Canola Growers Association (CCGA) gives farmers more control to market their crops and livestock when the time and price is best.With a cash advance, farmers can access up to $400,000 in cash flow to pay necessary expenses such as inputs or capital purchases, while gaining more control to execute their marketing plan. With commodity prices fluctuating throughout the year, more time to trigger sales at optimal prices means better returns for your crop or livestock sales. The benefits of this advance include a low blended interest rate, marketing flexibility and it won't tie up your farm's equity. A cash advance is low-cost financing. With the first $100,000 interest-free and the next $300,000 at very low interest rates, farmers can borrow funds at a blended rate that’s well below prime. For farmers starting out, an added benefit is minimal collateral requirements, which include the grain or livestock itself and the security from your crop insurance or other BRM program. (The Advance Payments Program, is a financial loan guarantee program established under Agriculture and Agri-Food Canada that gives farmers easier access to credit through cash advances.)Cash advance has three key benefits to farmers:1. Access to low-interest financing which lowers cost of production. With the first $100,000 interest-free and the next $300,000 at prime, farmers can borrow funds at a blended financing rate well below prime.2. Maximizes returns on commodity sales by providing more control and time to execute your marketing plan.3. Requires minimal collateral. There’s no signing over land or equipment that might be required by other types of financing instruments.For a list of the 45 commodities included in CCGA’s cash advance offering, visit ccga.ca/cash-advance or call 1-866-745-2256.
As global warming intensifies droughts and floods, causing crop failures in many parts of the world, Canada may see something different: a farming expansion.Rising temperatures could open millions of once frigid acres to the plow, officials, farmers and scientists predict.This story is part of our special report Rising Heat: A warming planet braces for a sweltering future. For the full story, click here.
The New Holland T6.175 Dynamic Command tractor was crowned Machine of the Year 2018 in the Mid Class Tractor category at the Agritechnica trade show in Hanover, Germany. The machine received the coveted award for its technical innovation and the benefits it brings to customers, with selection criteria focusing on innovative features, performance, productivity, cost of operation, ease of use and operator comfort.“This award is testament to New Holland’s long-standing leadership of the mixed farming and dairy segment. It is a well-deserved recognition of the hard work and dedication of all those involved in the development of the T6.175 Dynamic Command tractor, who worked tirelessly to produce a tractor that meets the specific requests of our customers,” said Carlo Lambro, President of New Holland Agriculture Brand.In August 2017, New Holland announced it is expanding its acclaimed T6 Series offering with the new T6 Dynamic Command option. These new T6.145, T6.155, T6.165 and T6.175 are the only tractors in the segment featuring a 24x24 semi powershift transmission on the market. They are versatile tractors that will be an asset to the fleets of dairy, livestock, and hay and forage operations.For more information, visit: http://www.newholland.com/na
The Climate Corporation, a subsidiary of Monsanto Company, recently announced at the Farms.com Precision Agriculture Conference, the launch of the Climate FieldView digital agriculture platform into Western Canada for the 2018 growing season. With Climate’s analytics-based digital tools, more Canadian farmers will be able to harness their data in one connected platform to identify and more efficiently manage variability in their fields, tailoring crop inputs to optimize yield and maximize their return on every acre.In September 2016, the company first announced the introduction of the Climate FieldView platform in Eastern Canada, where hundreds of farmers across nearly one million acres have been experiencing the value of data-driven, digital tools on their operations. Now, farmers in Manitoba, Saskatchewan and Alberta will have the ability to use the Climate FieldView platform to uncover personalized field insights to support the many crucial decisions they make each season to enhance crop productivity.“The Climate FieldView platform is a one-stop shop for simple field data management, helping Canadian farmers get the most out of every acre,” said Denise Hockaday, Canada business lead for The Climate Corporation. “Through the delivery of the platform’s powerful data analytics and customized field insights, farmers across Canada have the power to tailor their agronomic practices more precisely than ever before, fine tuning their action plans for the best outcome at the end of the season.”Over the past year, the Climate FieldView platform had a strong testing effort across many farm operations in Western Canada, enabling the Climate team to further develop the platform’s compatibility with all types of farm equipment and crops, including canola and wheat, to collect and analyze field data from multiple sources.“Part of the challenge with data is managing all of the numbers and having an adequate cloud system to store and effectively analyze the information,” said farmer D’Arcy Hilgartner of Alberta, who participated in testing the Climate FieldView platform on his operation this season. “The Climate FieldView platform instantly transfers the field data gathered from my farm equipment into my Climate FieldView account, which is especially useful during harvest season because I’m able to see where various crop inputs were used and analyze the corresponding yield. I’ve really enjoyed having this digital platform at my disposal, and I’m excited to see the positive impacts on my business this coming year.”As Climate continues to expand its digital technologies to help more farmers access advanced agronomic insights, additional new data layers will feed the company’s unmatched R&D engine, ultimately enabling the development of valuable new features for farmers in the Climate FieldView platform. In August 2017, the company announced the acceleration of R&D advancements through the company’s robust innovation pipeline, along with new product features and enhancements to help farmers manage their field variability more precisely than ever before. Launched in 2015, the Climate FieldView platform is on more than 120 million acres with more than 100,000 users across the United States, Canada and Brazil. It has quickly become the most broadly connected platform in the industry and continues to expand into new global regions.Climate FieldView Platform Offering in Western Canada Data Connectivity - Farmers can collect, store and visualize their field data in one easy-to-use digital platform through the Climate FieldView Drive, a device that easily streams field data directly into the Climate FieldView platform. FieldView Drive works with many tractors and combines across Canada, in addition to anhydrous applicators and air seeders, helping farmers easily collect field data for the agronomic inputs they manage throughout the season. Recently, The Climate Corporation announced a new data connectivity agreement with AGCO, providing more farmers even more options to connect their equipment to the Climate FieldView platform. In addition to the FieldView Drive, farmers can connect their field data to their Climate FieldView account through Precision Planting LLC's monitors, cloud-to-cloud connection with other agricultural software systems such as the John Deere Operations Center, and through manual file upload. Yield Analysis Tools - With Climate’s seed performance and analysis tools, farmers can see what worked and what didn’t at the field level or by field zone, and apply those insights to better understand field variability by quickly and easily comparing digital field maps side-by-side. Farmers can save regions of their fields in a yield-by-region report and can also save and record a field region report through enhanced drawing and note taking tools, retrieving the report at a later date for easy analysis on any portion of their field to better understand how their crops are performing. Advanced Field Health Imagery - Through frequent and consistent, high-quality satellite imagery, farmers can instantly visualize and analyze crop performance, helping them identify issues early, prioritize scouting and take action early to protect yield. Climate's proprietary imagery process provides consistent imagery quality and frequency by using high-resolution imagery with vegetative data from multiple images, in addition to advanced cloud identification. Farmers can also drop geo-located scouting pins on field health images and navigate back to those spots for a closer look, or share with agronomic partners. Seeding and Fertility Scripting - Farmers can manage their inputs to optimize yield in every part of their field with manual variable rate seed and fertility scripting tools. Through Climate’s manual seed scripting tools, farmers can easily create detailed planting plans for their fields to build a hybrid specific prescription tailored to their unique goals, saving time and improving productivity. Additionally, Climate offers a manual fertility scripting tool, enabling farmers the ability to optimize their inputs with a customized management plan for nitrogen, phosphorus, potassium and lime tailored to their unique goals. 2018 Availability and PricingThe Climate FieldView platform is currently available for purchase in Western Canada on a per-acre basis so that farmers can begin using it on their farms in time for the 2018 growing season. To experience the complete value of the platform throughout the entire growing season, farmers should sign up for a Climate FieldView account by Jan. 1, 2018. For more information about the Climate FieldView platform and pricing, contact Climate Support at 1.888.924.7475 or visit www.climatefieldview.ca.
A scientist from Agriculture Canada and an engineer from the University of PEI are teaming up on a project they hope will revolutionize how farmers deal with weeds in their fields. Their idea is to mount a camera and sensors on a sprayer.It then uses software to identify what's a plant and what's a weed and turn the sprayer on and off to target the weeds. This summer's work was the start of a five-year project, researchers are hoping to do field-scale demonstrations by year three. READ MORE
HORSCH, a global manufacturer of seeding, planting, tillage, and application equipment, is proud to introduce Canola Ready Technology for its Maestro SW row crop planters. The new Canola Ready Technology consists of a small seeds kit, including a set of stainless steel seed discs and quick-change meter components for fast conversion from row crops to canola. The kit allows producers unmatched precision seed placement and significant input savings when seeding canola.With the Maestro SW row crop planter equipped with Canola Ready Technology, canola producers are experiencing seed cost savings of 50 per cent or more per acre versus air seeders without sacrifice to yield, due to lower seed mortality rate and improved precision seed placement. “The seed savings alone in canola gains an extra $30-40+ per acre of margin. Features such as individual row shut off to control seeding overlap, curve compensation, and auto row unit downforce control add even more seed savings,” says Jeremy Hughes, product manager at HORSCH. “Beyond seed cost savings, the uniform emergence and consistent crop development seen in seeding canola with the Maestro is adding tremendous benefits to crop health management and harvest quality. These all have positive benefits on the farmer’s bottom line”.”“The Corn Belt is moving north,” adds Hughes. “The changes in crop rotations are shifting more toward canola/soybeans/small grains/corn in areas such as northern North Dakota and into the Prairie Provinces of Western Canada. The past two generations of farmers have primarily used air seeder technology for seeding crops. As our producers seek more precise seeding technologies for canola along with incorporating significant acres of soybeans and corn into their rotations, row crop planters become more viable in these areas. Maestro SW’s row unit and singulation technology provides superior seed placement precision for all of these crops.”The Canola Ready Technology is available to use on all Maestro SW row crop planter models. Maestro SW planters are available in 40’ and 60’ toolbar widths with row spacing of 15”, 20”, 22” or 30”.For more information, contact HORSCH LLC, 200 Knutson Street, Mapleton, SD 58059; call 1-855-4HORSCH; email This e-mail address is being protected from spambots. You need JavaScript enabled to view it ; or visit www.horsch.com.
Precision mapping technology is increasingly user-friendly. In fact, Aaron Breimer, general manager of precision agriculture consulting firm Veritas Farm Business Management, says some precision map-writing software is so simple a producer can segment zones or draw a boundary around a field with little more than the click of a mouse. The challenge is that the maps are only as accurate as the information used to create them.
Growers now have a new option to access and manage their irrigation system from anywhere at any time. Reinke introduces RC10, a remote monitoring device providing advanced control options for improved irrigation management and better overall water management.“When we talk with growers about their irrigation system needs, saving time and increasing efficiencies and productivity are often at the top of the list,” said Reinke President Chris Roth. “RC10 is designed to address these needs and more with its ease of use and advanced command and control capabilities.”RC10 is cellular or satellite based, providing 24/7 mobile access from anywhere. Growers can monitor and control their irrigation system using the advanced control features such as sector, end gun and auxiliary programming.The device is the latest addition to the ReinCloudÔ platform, Reinke’s ag data service. ReinCloud allows growers to manage and monitor their irrigation system, analyze soil moisture data, check the weather and more from a single mobile web application. Through the platform, irrigation system data is collected, stored and analyzed for the grower. Growers can organize their operation by property, zone and equipment, making it easier to quickly gain access to control and monitor their ag-based equipment.RC10 is housed within Reinke’s patented, double wall tower box and can be mounted at the main control or end of the system. The device is compatible with most irrigation systems.Reinke RC10 is now available through Reinke dealers. For more information on RC10, visit www.reinke.com.
In a presentation to the House of Commons Standing Committee on Transport, Infrastructure and Communities, the Alberta Wheat Commission (AWC) urged the quick passage of Bill C-49 – historic federal legislation that promises to provide long-term solutions to Canada’s grain transportation issues which have plagued the industry for decades.AWC’s presentation also recommended amendments to the legislation that would improve the effectiveness of long haul interswitching as a tool to improve railway competition. As currently proposed, AWC believes the new interswitching provisions may be less effective than those enacted under the former Bill C-30.Overall, AWC is pleased with measures in Bill C-49 – the Transportation Modernization Act, that will help correct the imbalance between the market power of railways and shippers and ensure that the cost of system failures are not passed down the supply chain to farmers.“AWC appreciates the federal government’s commitment to legislation that will improve railway competition and accountability in Canada,” said Kevin Auch, AWC Chair. “AWC has been pressing for rail reform since our organization began in 2012 and we saw the invitation to speak today as another opportunity to ensure the farmer voice is truly represented as this legislation is developed.”As a member of the Crop Logistics Working Group (CLWG), AWC also supports a series of suggested amendments that deal with more timely reporting of railway service data and requirements that the railways provide more detailed volume forecasts and operational plans to the Minister at the beginning of each crop year. The CLWG is a regular forum for grain industry stakeholders to identify supply chain challenges and commercial solutions aimed at enhancing the transparency and effectiveness of the grain handling transportation system.“We see our membership with the CLWG as an excellent opportunity to pass producer feedback directly to Minister MacAulay as it relates to grain movement by rail,” said Auch. “In providing these amendments, we hope to see long-awaited legislation that fosters growth of the agriculture sector and supports Canada’s reputation as a reliable supplier of grain to our international customers.”AWC encourages the federal government to continue the conversation with Canada’s agriculture sector as it works to develop the regulations to support the spirit and the intention of this legislation that seeks to create a more responsive, competitive and accountable rail system in Canada.
Plant-based sensors that measure the thickness and electrical capacitance of leaves show great promise for telling farmers when to activate their irrigation systems, preventing both water waste and parched plants, according to researchers in Penn State's College of Agricultural Sciences.Continuously monitoring plant "water stress" is particularly critical in arid regions and traditionally has been done by measuring soil moisture content or developing evapotranspiration models that calculate the sum of ground surface evaporation and plant transpiration. But potential exists to increase water-use efficiency with new technology that more accurately detects when plants need to be watered.For this study, recently published in Transactions of the American Society of Agricultural and Biological Engineers, lead researcher Amin Afzal, a doctoral degree candidate in plant science, integrated into a leaf sensor the capability to simultaneously measure leaf thickness and leaf electrical capacitance, which has never been done before.The work was done on a tomato plant in a growth chamber with a constant temperature and 12-hour on/off photoperiod for 11 days. The growth medium was a peat potting mixture, with water content measured by a soil-moisture sensor. The soil water content was maintained at a relatively high level for the first three days and allowed to dehydrate thereafter, over a period of eight days.The researchers randomly chose six leaves that were exposed directly to light sources and mounted leaf sensors on them, avoiding the main veins and the edges. They recorded measurements at five-minute intervals.The daily leaf-thickness variations were minor, with no significant day-to-day changes when soil moisture contents ranged from high to wilting point. Leaf-thickness changes were, however, more noticeable at soil-moisture levels below the wilting point, until leaf thickness stabilized during the final two days of the experiment, when moisture content reached 5 percent.The electrical capacitance, which shows the ability of a leaf to store a charge, stayed roughly constant at a minimum value during dark periods and increased rapidly during light periods, implying that electrical capacitance was a reflection of photosynthetic activity. The daily electrical-capacitance variations decreased when soil moisture was below the wilting point and completely ceased below the soil volumetric water content of 11 percent, suggesting that the effect of water stress on electrical capacitance was observed through its impact on photosynthesis."Leaf thickness is like a balloon—it swells by hydration and shrinks by water stress, or dehydration," Afzal said. "The mechanism behind the relationship between leaf electrical capacitance and water status is complex. Simply put, the leaf electrical capacitance changes in response to variation in plant water status and ambient light. So, the analysis of leaf thickness and capacitance variations indicate plant water status—well-watered versus stressed."The study is the latest in a line of research Afzal hopes will end in the development of a system in which leaf clip sensors will send precise information about plant moisture to a central unit in a field, which then communicates in real time with an irrigation system to water the crop. He envisions an arrangement in which the sensors, central unit and irrigation system all will communicate without wires, and the sensors can be powered wirelessly with batteries or solar cells."Ultimately, all of the details can be managed by a smart phone app," said Afzal, who studied electronics and computer programming at Isfahan University of Technology in Iran, where he earned a bachelor's degree in agricultural machinery engineering. He is testing his working concept in the field at Penn State.Two years ago, he led a team that won first place in the College of Agricultural Sciences' Ag Springboard contest, an entrepreneurial business-plan competition, and was awarded $7,500 to help develop the concept.Growing up in Iran, Afzal knows water availability determines the fate of agriculture. In the last decade, the Zayandeh River in his home city of Isfahani has dried up, and many farmers no longer can plant their usual crops. "Water is a big issue in our country," said Afzal. "That is a big motivation for my research."Afzal's technology is very promising, noted Sjoerd Duiker, associate professor of soil management, Afzal's adviser and a member of the research team. Current methods to determine irrigation are crude, while Afzal's sensors work directly with the plant tissue."I believe these sensors could improve water-use efficiency considerably," Duiker added. "Water scarcity is already a huge geopolitical issue, with agriculture responsible for about 70 percent of world freshwater use. Improvements in water use efficiency will be essential."In a follow-up study, Afzal has just finished evaluating leaf sensors on tomato plants in a greenhouse. The results confirmed the outcomes of the just-published study. In his new research, he is developing an algorithm to translate the leaf thickness and capacitance variations to meaningful information about plant water status.
Grain conditioning is a widely used term that can be used to identify situations where either aeration or natural air drying is being utilized. Knowing the difference between aeration and natural air drying will aid in selecting aeration systems, equipment, and storage that will best suit your needs.
For the tractor-mounted sprayer market for 2017, John Deere introduces the Frontier LS11 Series 3-point Mounted Sprayers. These economical, efficient sprayers are ideal for making spray applications to pastures, small or large fields, road ditches, fence rows, specialty crops and for other types of crops and field uses.The LS11 Series Sprayers have many features of the larger pull-type sprayers, including breakaway booms, manual and automatic controls and optional foam marker systems, that help operators reduce skips and overlaps.The Frontier LS11 Series Sprayers come in four different boom-width models, from 25-ft. to 40-ft., that customers can select from based on their application needs. The LS11 Series Sprayers are available in two tank sizes, 250-gallon or 300-gallon; can be powered either hydraulically or by the rear power take-off (PTO); and are Category 2 or Category 3 quick-hitch compatible. For greater convenience, the heavy-duty poly tanks are specifically designed with a tear-drop shape to allow liquid to more completely drain from the sprayers.Additional standard features of the LS11 Series Sprayers include a handheld spray wand to reach small or hard-to-access areas; integrated parking stand and fork-lift pockets to make hook up, moving and loading the sprayer easier; and wet booms that extend the life of sprayer hardware. All models come with a single nozzle body; however, a triple nozzle body is available on the 40-ft. boom sprayer.For more information on the new Frontier LS11 Series 3-point Mounted Sprayers from John Deere, see your local John Deere dealer.
The most advanced grain harvesting technology from front to back is featured in the combines and headers John Deere is introducing for model year 2018 production. This includes four new S700 Combine models (S760, S770, S780 and S790) that offer producers significant improvements in “smart” technology, improved operator comfort and better data, along with the 700C/FC Series Corn Heads and 700D Drapers for more efficient grain harvesting.Building on the proven field performance of the S600 Combines introduced in 2012, the new S700 Combines incorporate the latest in automated harvesting technology. Many of these changes make it easier on the operator by allowing the combine to make needed adjustments automatically, on the go.To make it easier for operators to maximize the performance of their new S700 Combine, John Deere introduces the Combine Advisor package. Combine Advisor incorporates seven technologies to help operators set, optimize and automate the combine for the most effective harvesting performance based on their crop and field conditions.Auto Maintain is a function within Combine Advisor that is supported with ActiveVision cameras.Another addition to the S700 Combines is Active Yield technology that automatically calibrates the mass flow sensor. This saves time by eliminating the need for manual calibrations and ensures the best data is collected.The biggest physical difference customers will see in the S700 Combines compared to previous models is in the cab. This starts with a new state-of-the-art CommandCenter, providing a common user experience across Deere’s larger tractor and self-propelled sprayer lines, that emphasizes customization and operator comfort.Machine performance features of the CommandCenter include a Gen 4 interface and monitor with 4600 processer; CommandArm and multi-function control lever with greater ergonomic design and customizable buttons; premium activation with AutoTrac, RowSense and HarvestDoc; and Extended Monitor and mobile device features. In addition, operators will find set up and start up much quicker and easier, thanks to more intuitive harvest run and setup screens.The new cabs feature either leather or cloth seats that swivel 7.5 degrees left and 15 degrees right for improved visibility; enhanced seat ventilation for greater comfort; improved seat cushion with optional leather seat; and additional grain tank mirrors for improved visibility of the grain tank.New corn head and platform, tooAlong with the S700 Combines, John Deere is introducing the 700C/FC (folding corn head) Series Corn Heads with the RowMax row unit. The RowMax row unit provides up to a 50 percent increase in the life of the row unit gathering chains and features solid-alloy bushings that reduce pin and bushing wear.The 700C/FC Series Corn Heads are available in 6- to 18- row models, in 20-, 22- and 30-inch row widths. The StalkMaster stalk-chopping option is available on all models. Folding corn heads are available on 8- and 12-row units, which allow operators to spend more time harvesting and less time and hassle disconnecting, trailering and reconnecting heads when moving from field to field.For corn growers harvesting high moisture corn, there are several enhancements available specifically tailored to better handle this demanding crop. High moisture corn enhancements on the corn head include an auger floor insert to ease crop handling and a lower auger height to minimize crop damage.For small grains, Deere introduces the 700D Rigid Draper, which provides a 20 percent increase in capacity in tough harvesting conditions over the previous model. The 700D features a top crop auger that’s 50 percent larger in diameter (now 18 inches) with heavy-duty drives, high-performance gauge wheels, and a new center section seal kit that reduces center section grain losses by up to 45 percent in canola.For more information on the new S700 Combines, 700C/FC Corn Heads, 700D Rigid Draper and other harvesting solutions from John Deere, see your local John Deere dealer.
Producers looking for an affordable vertical tillage tool that sizes and buries residue in the fall or prepares smooth seedbeds in the spring have another option: The new Frontier VT17 Series Vertical Tillage Tool from John Deere.The VT17 Series offers fore and aft leveling adjustments that can quickly be made using a simple crank system. Gang angles on the implement can be adjusted from zero to 12 degrees for less or more aggressive tillage. Operators can fine-tune the machine’s operating depth from zero to three inches using a pin-and-clip adjustment.The VT17 comes with the choice of 20-inch straight or 22-inch concave blades. Each blade type is fluted for improved residue flow, sizing, and mixing, even with aggressive gang settings. The machine’s spring-adjustable rolling baskets run perpendicular to the blade direction to break up clods and improve field leveling and seedbed uniformity.Tandem dual wheels, standard equipment on all VT17 models, are mounted on a tubular carriage frame that’s hydraulically raised and lowered. As an option, an adjustable middle breaker can be mounted between the wheels on the center frame to disrupt soil in the center-line of travel that’s left open where the front and rear gangs do not overlap.Four sizes of VT17 Series Vertical Tillage Tools are available with working widths ranging from 10 to 15 feet. Tractor horsepower requirements range from 85 to 150 horsepower depending on the width of the model it’s paired with.Frontier equipment is available exclusively at your local John Deere dealer. For more information, click here.
Biofuelnet Canada (BFN) has launched a call for expressions of interest (EOI) for our proposal to the Agri-Science Cluster program of Agriculture and Agri-Foods Canada (AAFC) later this fall.Through mutual agreement, your EOI may also be used in future BFN proposals to other funding programs, including those run by the Networks of Centres of Excellence.The purpose of this new Agri-Science cluster is to engage Canada’s agricultural operators, industry, universities, government and other R&D organizations to sustainably increase food and biomass production, in the context of a changing climate.This call for EOI is focussed on advancing the emerging technologies that will help agricultural producers across Canada sustainably meet the needs of Canada’s and the world’s growing population, and provide the biomass (crop residues, purpose-grown on marginal lands, animal residues) needed by the bioenergy and bioproducts industries.The new cluster will bring together Canada’s considerable entrepreneurial and technological strengths to: Extend agricultural production to northern latitudes, by using advanced greenhouse technologies such as biomass combined heat and power (CHP) to extend the growing season, CO2 enrichment and biologicals to accelerate growth and improve stress resistance in plants being grown locally as biomass for the greenhouse operation. Increase agricultural production and reduce input costs by developing biologicals for Canadian applications on a range of important economic crops and biomass for bioenergy. The choice of biologicals must pass all government health and environmental assessment requirements. Increase agricultural production and reduce input costs by accelerating the uptake of advanced information technologies, including novel instrumentation, remote sensing, automation, precision farming, use of “big data”, artificial intelligence, Internet of Things etc., to increase the profitability of food and biomass production for the agricultural sector. Develop evidence-based agri-economic models, tools and policies to enable the agricultural sector to benefit from the emerging carbon markets. This call is open to companies incorporated in Canada at the federal or provincial levels, R&D organizations, universities, not-for-profit organizations, and individuals. Applicants are also encouraged to include self-funded participants such as municipalities, government research labs and international partners.The Agri-Science Cluster program requires that the cluster be industry-led and that industry provide 25 per cent co-funding.The deadline for the EOI is Sept. 15, 2017. Learn more here.
US researchers have maintained that miscanthus, long speculated to be the top biofuel producer, yields more than twice as much as switchgrass in the US using an open-source bioenergy crop database gaining traction in plant science, climate change, and ecology research. "To understand yield trends and variation across the country for our major food crops, extensive databases are available — notably those provided by the USDA Statistical Service," said lead author Stephen Long, Gutgsell professor of Plant Biology and Crop Sciences at the University of Illinois. He added: "But there was nowhere to go if you wanted to know about biomass crops, particularly those that have no food value such as miscanthus, switchgrass, willow trees, etc." To fill this gap, researchers at the Energy Biosciences Institute at the Carl R. Woese Institute for Genomic Biology created BETYdb, an open-source repository for physiological and yield data that facilitates bioenergy research. The goal of this database is not only to store the data but to make the data widely available and usable. | READ MORE.  
According to research by VTT Technical Research Centre of Finland, extraction with deep eutectic solvents (DESs) offer an efficient, sustainable and easy method for dissolving proteins from agrobiomass by-products. DESs are mixtures of solids that form a liquid solution at low temperatures when mixed in suitable ratios. The method has been tested on separating protein from BSG, rapeseed press cake and wheat bran, all of which contain significant amounts of protein. These food industry by-products contain significant amounts of fibre, which decreases their suitability as feed for production animals that are not ruminants. Brewer's spent grain responded best to protein separation with DES: almost 80 per cent of the protein in BSG could be separated, while conventional extraction methods can achieve no more than 40 per cent. The separation of other substances, such as carbohydrates, can be optimised through the choice of DES. This new protein enrichment method can particularly benefit breweries and animal feed producers, but there are hopes that after further research, this method could also find applications in the food industry. | READ MORE.
As OMAFRA’s industrial crop specialist based at the Simcoe Research Station, Jim Todd works with non-food crops that have a variety of industrial uses – including energy production, or as a source of specialty oils, chemicals or medicinal compounds.  Although predominantly used as an energy source, petroleum also serves as an industrial feedstock for the manufacture of many products used in daily life. For various reasons, countries around the world are searching for renewable replacements for petroleum. One promising alternative comes from the seed oils of plants. There are hundreds of different types of plant seed oils, many of which contain fatty acids that are structurally similar to those obtained from petroleum and so could be used in the manufacture of sustainable, environmentally friendly designer oils with specific end uses. Researchers from OMAFRA and the University of Guelph are currently investigating the potential of growing two unique plants, Euphorbia lagascae from the Mediterranean and Centrapalus pauciflorus from Africa, as sources of vernolic acid, a naturally occurring epoxidized fatty acid that can directly substitute for the synthetic vernolic acid made from petroleum, soy or linseed oil.  Epoxidized fatty acids are useful as raw materials for a wide variety of industrial processes including the synthesis of chemicals and lubricants.  Vernolic acid is most commonly used as a plasticizer in the manufacture of plastic polymers such as polyvinyl chloride or PVC.  The main goal of the three-year study is to test the suitability of Euphorbia and Centrapalus for commercial cultivation under Ontario’s climatic conditions. Trials to identify suitable varieties and provide information on the agronomic requirements for successful cultivation are ongoing. Other factors being evaluated include seeding practices, fertility and water requirements, harvesting methods, and weed/pest control. Oil has been extracted and analyzed to determine the range of total oil yield and vernolic acid content. Overall, both plants have performed well, but researchers have identified a few key areas that need further research.  Field germination rates remain low, indicating a need for breeding to improve this trait and efficient harvest of Centrapalus will require the development of specialized harvest and seed cleaning equipment. 
As foreign competition and falling U.S. demand are hurting American tobacco farmers, a Virginia company is preparing the crop’s second act as a biofuel. Tyton BioEnergy Systems of Danville is testing its technique for extracting the plant’s fermentable sugars on a small scale and plans to start industrial production in 2017, Peter Majeranowski, the company’s co-founder and president, said during a recent investor webinar. Tobacco has a lot to recommend it as a biofuel source. Most industrial crops are high in either sugar or oil. Tobacco has both, and Tyton’s plant breeders have doubled or tripled the content of both in the company’s specialized lines, Majeranowski says. Tobacco is relatively low in lignin, the compound that gives plants their rigidity. “It’s kind of a soft plant and requires a less aggressive or more mild process to break it down,” Majeranowski says. Easier breakdown leads to lower processing costs, he says. | READ MORE.
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Jan. 20, 2017 - The Vancouver Declaration resulting from the First Ministers' Meeting in March 2016 saw the beginning of a co-ordinated national approach to carbon risk mitigation. Buoyed by support from high-profile business groups (including key oil and gas sector leaders), the First Ministers' Meeting on Dec. 9, 2016 in Ottawa saw the adoption of the Pan-Canadian Framework on Clean Growth and Climate Change, which included several significant announcements regarding federal investment in green infrastructure, public transit, and clean technology and innovation. Canada's industrial powerhouse, Ontario, is ahead of the pack when it comes to low-carbon electricity policy, and has been for quite some time. Ten years after the launch of the province's early procurement programs for wind, solar, hydro and other forms of renewable energy, the province enjoys a vibrant renewable energy sector with leading-edge manufacturing capabilities, a coal-free electricity system, and a project development and finance sector that is active around the globe. Across the U.S. border, things have changed somewhat recently, at least, at the federal level.  | READ MORE.
Today many biofuel refineries operate for only seven months each year, turning freshly harvested crops into ethanol and biodiesel. When supplies run out, biorefineries shut down for the other five months. However, according to recent research, dual-purpose biofuel crops could produce both ethanol and biodiesel for nine months of the year – increasing profits by as much as 30 per cent. “Currently, sugarcane and sweet sorghum produce sugar that may be converted to ethanol,” said co-lead author Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “Our goal is to alter the plants' metabolism so that it converts this sugar in the stem to oil – raising the levels in current cultivars from 0.05 per cent oil, not enough to convert to biodiesel, to the theoretical maximum of 20 per cent oil. With 20 per cent oil, the plant's sugar stores used for ethanol production would be replaced with more valuable and energy dense oil used to produce biodiesel or jet fuel.” A paper published in Industrial Biotechnology simulated the profitability of Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) with 0 per cent, 5 per cent, 10 per cent, and 20 per cent oil. They found that growing sorghum in addition to sugarcane could keep biorefineries running for an additional two months, increasing production and revenue by 20-30 per cent. | READ MORE
Dec. 9, 2016 - The federal and provincial governments have teamed up to help implement a bioeconomy strategy for Northern Ontario. The two senior levels of government are providing a total of $216,792 to help put a plan into action aimed at creating new renewable energy opportunities throughout the North. Developed in 2015 by the Biomass North Development Centre, in partnership with the Union of Ontario Indians, the strategy will look to reduce policy and regulatory barriers for the industry, develop a skills and training road map for future workers and better inform the public and potential partners about biomass applications and concepts. “This is an opportunity of partnerships and benefits for all of the North,” said Dawn Lambe, the biomass development centre's executive director. | READ MORE.
Dec. 1, 2016 - An Italian company is interested in turning biomass into a new southern Alberta industry. And the Alberta government is providing the data to show what would work. Representatives from Alberta Economic Development and Trade, along with a spokesperson for Beta Renewables from Tortona, Italy, outlined the potential to Lethbridge County Council on Monday. Earlier this year, the county was one of five Alberta jurisdictions to sign onto a formal biomass mapping project across the province. The study found 12 million tonnes of biomass available annually in the form of straw and other byproducts of the region’s grain and speciality crop production – plus 633,000 tonnes of waste from livestock production. “This is good news,” Reeve Lorne Hickey said, as council members asked for more details. For Lethbridge-area farms growing flax, one councillor pointed out, it could provide a way to get rid of flax straw – too strong to be used like other straw. | READ MORE.
The president of a new farm co-op says it's working to sign up 200 to 300 members to supply corn stalks and leaves, also known as stover, as well as wheat stalks, to a proposed new plant in Sarnia, Ont., that will turn the biomass into sugar. The Sarnia Observer reports. | READ MORE
August 10, 2016 - A UBC professor’s flax research could one day help Canadian farmers grow a car fender. In a recent study, UBC researcher Michael Deyholos identified the genes responsible for the bane of many Canadian flax farmers’ existence; the fibres in the plant's stem. “These findings have allowed us to zero in the genetic profile of the toughest part of this plant and may one day help us engineer some of that toughness out,” says Deyholos, a biology professor at UBC's Okanagan campus. “With further research, we might one day be able to help farmers make money off a waste material that wreaks havoc on farm equipment and costs hundreds of hours and thousands of dollars to deal with.” As part of his research, Deyholos and his former graduate student at the University of Alberta dissected thousands of the plant’s stem under a microscope in order to identify which genes in the plant's make up were responsible for the growth of the stem, and which weren’t. Due to the length of the Canadian prairie’s growing season, where flax is grown, farmers typically burn the stems, known as flax straw, as opposed to harvesting the material. In many European countries, flax straw is used as an additive in paper, plastics and other advanced materials such as those used in the production of automobiles. Currently, Canadian flax is used only for the value of its seeds, which can be eaten or broken down into flaxseed oil. Flaxseed oil is used in the manufacturing of paints, linoleum, and as a key element in the manufacturing of packaging materials and plastics. According to the Flax Council of Canada, Canada is one of the largest flax producers in the world with the nation’s prairie provinces cultivating 816,000 tonnes of the plant in 2014/15 on 1.6 million acres of land.Deyholos’ research was recently published in the journal Frontiers of Plant Science.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine