Getting the most out of your cereal fungicide: advice for Western Canada, part one

Getting the most out of your cereal fungicide: advice for Western Canada, part one

Crop rotation and variety resistance are important tools for our first line of defence against disease.

Field crop disease management in Canada part one: What the past can tell us

Field crop disease management in Canada part one: What the past can tell us

In the past, disease management in field crops was largely based on major gene resistance and the use of fungicides.

Benefits from tree-based intercropping

Benefits from tree-based intercropping

Tree-based intercropping – growing trees together with crops

Keeping an eye on fababean insect pests

Keeping an eye on fababean insect pests

Set out a free smorgasbord and see who shows up.

Weed seed predation for improved management

Weed seed predation for improved management

Largely overlooked and previously not studied a lot in Canada

Dr. Kelly Turkington discusses considerations to spray a fungicide, recommendations for Fusarium head blight in cereals and how to get the most out of your cereal fungicide applications.  Click here for the full summary of Dr. Turkington’s presentation. Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management. Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Crop rotation is an important tool for our first line of defence in Western Canada. From a pathologist’s perspective, a wheat-canola-wheat-canola rotation – a single year between host crops – is not long enough to realize one of the benefits of rotation and allow decomposition of any infested crop residue.  Variety resistance is also an excellent tool. When you have a variety with good levels of resistance, you really don’t need to spray a fungicide. The problem is that in your field you’re facing a range of diseases and it’s been very difficult to get varieties that have good levels of resistance to absolutely every disease issue that you might have in that field. If you have a tight rotation, your variety may not have the package of resistance that you need and, as a consequence, you will start to rely on fungicides.  We like to use the disease triangle to express what a disease is all about. It’s the result of a susceptible host, a favourable environment and sufficient quantities of a virulent pathogen. The key thing to remember is that what you do in terms of crop management practices will impact the interaction of those three factors and ultimately, the risk of disease.  The disease triangle. Source: Dr. Kelly Turkington Interation of fungicides with variety resistanceAt a trial in Melfort, Sask., three barley varieties rated susceptible (Sundre), intermediate (Chigwell) and with a good resistance package (Vivar) against net-form net blotch were sprayed with Twinline (metconazole + pyraclostrobin) fungicide at the flag-leaf stage. With no fungicide application, Sundre had just under 20 per cent leaf area diseased on the penultimate leaf, but there was very little disease on Chigwell and Vivar with or without a fungicide. With a fungicide, there was a dramatic reduction in disease with Sundre. If we look at yield, Sundre went from around 115 bushels per acre (bu/ac) without a fungicide to 145 bu/ac with the fungicide application. Chigwell had a bit of a response to fungicide application, which may be because it has an intermediate level of resistance. Vivar’s response to fungicide was basically flat. So, if you’re using a resistant variety that is giving you the protection you need, you don’t need to worry about putting on a fungicide. General knowledge on application timing In terms of fungicide application timing in cereals for leaf disease, it is important to know where yield and grain fill comes from. The literature suggests the wheat ear (head) contributes about 22 per cent to yield, while the flag-leaf contributes about 40 to 45 per cent, and penultimate (leaf below the flag) contributes about 23 per cent. Those are the key plant tissues that you want to protect.  In barley, the flag-leaf is less important because it tends to be quite small in some varieties. The literature for barley suggests the head contributes around 13 per cent, the flag-leaf stem 25 per cent, the flag-leaf nine per cent and the penultimate about 20 per cent. Overall, if you’re looking at a target as far as protecting the plant tissues that are key for grain filling and yield, the upper canopy tissues in those cereal crops are going to be your target. Pathogen characteristics The characteristics of the pathogen can be very important when trying to improve your ability to manage plant diseases with a fungicide. A monocyclic pathogen has one cycle of spore production, host infection and disease development, so there’s a very specific target there. Fusarium head blight (FHB) is a monocyclic pathogen. Polycyclic pathogens cycle on the living crop more than once per growing season. These are diseases like stripe rust, tan spot, Septoria, net blotch and scald. This cycle may mean you can’t rely on a single application and may need several applications to get the level of control you desire, especially with highly susceptible varieties and under favourable weather conditions. Stripe rust is an example of a polycyclic pathogen. It can move from spring wheat onto winter wheat seedlings in the fall. If I were advising a producer, I would note the presence of stripe rust in the fall and then be out in the winter wheat field as soon as the crop started to re-grow in the spring to see if the stripe rust fungus had survived. The stripe rust pathogen can rapidly cycle on the wheat crop: spores released from pustules on infected leaves are carried by the wind to healthy leaf tissue where they germinate, produce hyphae, penetrate plant tissue and within seven to 14 days, you’ll have symptoms – including pustules that produce a new crop of spores. So, every seven to 14 days, stripe rust can cycle on the crop well before head emergence. Thus, later on, on those upper-canopy leaves, you may see symptoms of stripe rust that can cause significant concern, especially if the disease becomes established in the crop before flag-leaf to head emergence. Fungicide insensitivity What about pathogen adaptation to the active ingredients in fungicides? Pathogens with a high risk of adapting to the active ingredients in fungicides have the following characteristics: they have mixed reproduction, so they reproduce sexually as well as asexually; and they also have an outcrossing system of reproduction where with they have male and female isolates – or mating types, – so you need a male and female for sexual reproduction to occur. Sexual reproduction where different mating types are needed has the potential to create more genetic variability in the fungal pathogen, which can then be selected for when applying a fungicide. The other important thing is high genetic and pathogenic diversity in that pathogen, which increases the risk that a pathogen will adapt. An example of a pathogen at moderate to high risk of adaptation to either plant disease resistance or fungicide active ingredients is the net blotch pathogen. In a study funded by the Western Grains Research Foundation, Alireza Akhavan, a PhD student working at the University of Alberta, found high levels of genetic/pathogenic diversity in the net blotch pathogen. It also reproduced asexually as well as sexually and with mixed mating types. Using a laboratory assay, Alireza found a few isolates that were insensitive (resistant) to Tilt (propiconazole) and, in some cases, insensitive to Headline (pyraclostrobin). Randy Kutcher at the University of Saskatchewan is also looking at the tan spot fungus and potential insensitivity in the tan spot population. Shifts in the fungicide sensitivity of cereal pathogens have been recognized in Europe for some time now and there have also been reports of changes in North America. For example, in February 2015, Chris Mundt and colleagues at Oregon State University put out a disease update notice (Oregon State University, Disease Update, February 20, 2015, Chris Mundt, Mike Flowers, Nicole Anderson and Clare Sullivan), stating that, based on surveys from 2014, there were indications some fields had Septoria resistance to strobilurin (Group 11) fungicides. They also reported resistance to triazoles (Group 3) was starting to build. Their recommendation in that part of the Pacific Northwest was to only apply a fungicide for early-season leaf disease control when stripe rust was present, because the fungicides were still effective against stripe rust. They also recommended using a succinate dehydrogenase inhibitor (SDHI) fungicide (Group 7) once per year, and for growers who did so to combine it with either a strobilurin or perhaps a triazole. Click here to see part two: managing the tools available, including fungicide application timing trials. This article is a summary of the presentation “Getting the Most Out of Your Cereal Fungicide: A Western Canadian Perspective,” delivered by Dr. Kelly Turkington, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Managing the tools available Given that fungicides are an important component of their leaf disease management programs, farmers need to manage the fungicides we have by using products with more than one active ingredient and/or rotating the products they use. [Miss part one? Click here.] When a susceptible variety is grown and weather conditions are very favourable, farmers may be concerned about early season leaf disease development. Rather than applying a fungicide with their herbicides, one option might be to look at a seed treatment and use xylem-mobile fungicides that will move from the seed up into the leaf tissue to provide some early season leaf protection. These fungicides are mixed with other fungicides that give us good activity on some of the root rots, whether it’s Fusarium or Rhizoctonia or Pythium and so on. Ideally, one may want to use a seed treatment with different active ingredients versus foliar fungicides that may be used later on in the season, with one application of a triazole to give us some suppression of FHB and late-season leaf disease management.  Using a seed treatment for early season leaf disease management is food for thought and may be a strategy to consider. Nature of a fungicide influences risk of resistance The nature of the fungicide also plays an important role in effectiveness. Some fungicides do very well in terms of particular plant pathogen groups versus other fungicides, so check the provincial crop protection guides to make sure you are choosing the right fungicide for the disease issues you are targeting.  The nature of the fungicide also influences the risk of fungicide resistance. Fungicides with a very specific individual target (single site activity) within the pathogen are typically at higher risk versus actives that have multiple targets (multi-site activity). Mobility within the plant also plays a role, as it influences the efficacy, persistence and period of activity. Mobility also influences application technology, so if the product is not systemic, it will be especially critical to use practices that ensure good coverage of the plant surface you are trying to protect. Fungicide timing and leaf spot diseases Fungicide application timing is important for cereal leaf spot management. From 2010 to 2012, we looked at the effect of fungicide timing on leaf spot diseases in barley at 13 sites. Specifically, we compared tank-mixing a fungicide with herbicide versus putting that fungicide on at the flag-leaf stage versus using a split application, a half rate earlier on and then coming in with either a half rate or a full rate of fungicide at flag-leaf emergence. Overall, our results indicated the best leaf disease control and the highest yields were achieved where we put a fungicide on at the flag-leaf stage and where we did not delay the herbicide application and, thus, had early weed removal.  Table 1: Yield and herbicide/fungicide treatmentTurkington et al. 2015. The impact of fungicide and herbicide timing on foliar disease severity, and barley productivity and quality.               Can. J. Plant Sci. 95: 525–537. Timing also a factor in stripe rust control Another trial, led by Kutcher and Brian Beres with Agriculture and Agri-Food Canada in Lethbridge, Atla., and conducted in Lacombe, Alta., illustrated the importance of fungicide application timing for stripe rust control in winter wheat. The most effective application for AC Bellatrix, a susceptible variety, was in the spring at the flag-leaf stage. For Radiant, a variety with some resistance, there was no need for a fungicide. As mentioned previously, seed treatments may be an option for early- to mid-season leaf disease management. Recently, we did a set of experiments – including at Melfort – looking at the interaction of variety, seed treatment and fungicide on net blotch on barley. In 2013, we simply used a seed treatment without a fungicide and reduced the level of disease to less than 10 per cent of the leaf area affected from 30 per cent in the untreated control. If you looked at Twinline foliar fungicide applied with no seed treatment, there was very good control. Where we combined seed treatment with foliar treatment, it really didn’t improve control. Our best yield response was where we simply put Twinline on at the flag-leaf emergence stage, whether a seed treatment was used or not. Overall, if you look at work done by research groups across Western Canada, if you have the opportunity to choose a variety that has good levels of resistance to the disease spectrum you’re dealing with, that’s an excellent tool to manage disease and will help you to avoid a fungicide application.  However, the varieties you want grow may not have a complete package of resistance to the diseases of concern. Thus, it will be important to scout fields at or just prior to flag-leaf emergence to assess disease risk and its potential impact to determine if a foliar fungicide application is required to protect key upper plant canopy tissues.  FHB application timing Currently the recommendation for FHB fungicide application is to spray when you’ve got 75 per cent of the heads out of the boot – that’s when you can start – to about when you have 50 per cent of the head showing anthers in the middle part of that head. The problem with starting at 75 per cent head emergence is that 25 per cent of the heads are still in the boot. Thus, given the nature of the fungicides that we use for FHB, applications at 75 per cent head emergence will not provide much, if any, benefit for those heads not yet emerged. Recent research from the United States suggests we may have a wider window for application post head emergence to get the most out of that fungicide application.  Trials from the U.S. looked at fungicide timing and effect on FHB disease rating and DON content with applications at the start of anthesis (when you first see yellow anthers emerging from the middle part of the wheat head) and then either two, four or six days following the start of anthesis. Overall, results suggested that even at four and six days after anthesis, control was as good as applications at anthesis, and in some cases may actually be slightly better. The trend was similar with DON content. I think, in terms of getting the most out of our fungicide application for FHB, we need to look at revising our target. Maybe going a little later is something to consider so you provide protection for all heads within the crop. However, growers are cautioned that they need to follow label recommendations and the pre-harvest intervals for the products they use. Expectations for fungicides In terms of expectations for fungicides, it’s important to be realistic. Fungicides can certainly be effective tools for some diseases, but it’s important to use them prudently and to manage those fungicides so they remain effective tools for you over the next 10, 15, 20 years. Timing can have a huge impact. Fungicide application also doesn’t mean a completely disease-free crop and, thus, it is important to leave some check strips so that you can adequately judge fungicide performance. Overall, farmers are encouraged not to rely exclusively on fungicides as their only defence against plant disease. Try to use the other tools in the toolbox. The more tools you have, the broader your ability to control disease and other pest and crop management issues in your crop.  By using a range of tools, including crop rotations of at least two years between host crops, you’re going to prolong the effectiveness of tools such as disease resistance and fungicides into the future. This article is a summary of the presentation “Getting the Most Out of Your Cereal Fungicide: A Western Canadian Perspective,” delivered by Dr. Kelly Turkington, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management. Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Recent Alberta research shows that some wheat cultivars have a higher respose to more intensive agronomic management practices than others. This type of cultivar-specific information could help growers make more informed decisions on variety selection and management.
Globalization of the Arctic, emergence of invasive microbial pathogens, advances in genomic modification technology, and changing agricultural practices were judged to be among the 14 most significant issues potentially affecting how invasive species are studied and managed over the next two decades. | READ MORE
LET'S START WITH THE PAST...In the past, disease management in field crops was largely based on major gene resistance and the use of fungicides.
Canola is a booming crop in Canada. Canola oil is the second most widely used oil (behind soybean oil) in North America’s food industry, and for good reason: it offers healthy omega-6 and omega-3 fatty acids, a high smoke point and neutral flavour. And for the past two decades, highly stable high-oleic canola oil has offered additional benefits – an even higher smoke point, as well as better stability for longer-term use in deep fryers. While acreage of canola is substantial in Canada’s Prairie provinces and fairly steady in Ontario, acreage of canola in the Maritimes has dropped in recent years. In 2013, there were 1,106 acres of canola grown in Prince Edward Island. This number has dropped to only 776 acres in 2014, with fewer than 700 acres estimated for 2015. However, Danny Doyle, a spokesperson for the Prince Edward Island Department of Agriculture and Fisheries, says there is canola research planned. He notes farmers in that province would like to see non-GMO varieties with good clubroot resistance and yield potentials of one metric ton per acre. New Brunswick’s canola acreage has also drastically dropped in recent years. In 2011, the province grew 10,000 acres of the crop; in 2012, that number dropped to 7,500, then to 6,000 in 2014, and in 2015, only 2,000 acres of canola were grown in New Brunswick. Peter Scott, a crop specialist in the New Brunswick Department of Agriculture, says acreage has shrunk because the forward contract price of canola has dropped off, and a fair amount of clubroot infection in 2014 caused farmers to pause. “It’s always a concern how canola fits a potato rotation,” he adds. “Some growers were producing hybrid canola seed from 2000 to 2005, but some saw potatoes following canola with reduced yields. The thinking is that nitrogen is being tied up to break down the canola residue, and this starves potatoes at a critical time.” As for Nova Scotia, commercial canola acreage is presently nothing, says Doug MacDonald, scientific officer for the Cereal and Oilseed Research Group in the faculty of agriculture at Dalhousie University in Halifax. “There is only a very small acreage grown by a handful of people,” he notes, “which is crushed in their own small presses for sale at farmers markets or for their own biodiesel.” However, a great deal of canola research is underway in Nova Scotia. Scientists in the province have been conducting Ontario spring canola variety tests since 2005 (winter canola tests were also done over several years but were discontinued due to limited interest). “The spring canola yields in our small plot tests have averaged approximately 2.7 tons per hectare over the past four seasons,” notes MacDonald. “Winter canola yields have been similar and occasionally better when winter survival is good, which varies greatly from year to year. Complete winterkill is common with the current genotypes available. There is also the concern, with spring or winter canola, of disease buildup – particularly sclerotinia, which can infect some crops used in rotation with canola such as soybeans and potatoes.”   There is also ongoing canola research headed by Prince Edward Island-based Eastern Canadian Oilseed Development Alliance (ECODA), a five-year, $6.7-million canola and soybean research project launched in 2013. It involves researchers in Ontario, Quebec and the Maritimes and is funded through Agriculture and Agri-Food Canada and industry partners. “One project involves winter canola variety evaluation, seeding dates and rates,” explains MacDonald. Jan Holmes, ECODA project manager, says early results showed the varieties of winter canola in the trial had a difficult time surviving, but there may be other varieties that can survive the eastern Canadian winters, and more evaluation is occurring. A second ECODA project is looking at canola nutrient management; particularly the response of various hybrids to nitrogen, nitrogen/sulphur and boron. MacDonald says the results will help scientists identify nutrient deficiency levels and develop improved guidelines for site-specific management. Preliminary results show at as N rates were increased, early flowering, plant biomass, height and leaf area all increased as well. “For all site-years, branch and seed numbers also increased with increasing N, sometimes significantly,” says Holmes, “but sidedressed N did not affect yield. Soil sulphur availability and sulphur mineralization potential must be considered for site-specific sulphur recommendations.” The development of effective integrated pest management (IPM) practices for swede midge is also in the works. So far, results show that early and middle pesticide applications are more effective than later ones, but the effect of applications was variable. IPM strategies for the control of other insect pests of canola (flea beetle, pollen beetle and cabbage seedpod weevil) are also being created. Yet another canola study is focusing on how such factors as crop rotation, nutrient management, planting date and plant density affect the incidence and severity of diseases like stem rot and blackleg. A different project involves determining the effect of fungicides, biological agents, marine bioproducts and combination treatments for the control of these diseases. Further experiments will show the effects of plant population on stress tolerance and seed quality of spring canola, and how canola can best be integrated in a potato cropping system. “We’re also conducting field trials with best formulations of signal compounds,” Holmes explains, “and have found so far that signal compounds LCO and thuricin at extremely low concentrations slightly increased yield in winter canola. Full study results have the potential to lead to the development of new products, which, in turn, will lead to increased yields.” Even though it will take more time for the full results of these studies to become available, Holmes believes canola is already economically competitive with small-grain cereals. “It’s a high-value crop that can be useful in rotation with potatoes, corn and soybean,” she says. “Canola is a viable crop option for Eastern Canadian growers, even Maritimes growers who must transport the seed to Quebec for crushing.”
Dr. Bruce Gossen discusses some of the results of his long-term cropping study and what that means for growers in Canada looking to manage crop diseases.Click here for the full summary of Dr. Gossen's presentation. Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Ag-West Bio, Saskatchewan’s bioscience industry association, has approved a $300,000 investment in Smart Earth Seeds, a vertically-integrated plant breeding company developing high-omega meal and oil products derived from its proprietary camelina genetics platform. Camelina offers special promise as a sustainable source of the essential fatty acid ALA (an omega 3 fatty acid) as well as an ideally balanced Omega3:Omega6 ratio. It’s also rich in vitamin E and natural antioxidants. Smart Earth Seeds has generated over $1 million from sales of its camelina products, including significant sales into the aquafeed industry. Smart Earth has sought and received approvals from the Canadian Food Inspection Agency for use of rich-Omega3 camelina meal as feed for broiler chickens and egg-laying hens. CFIA has recently approved camelina oil for use as a feed ingredient for salmon and trout. Exciting breakthrough markets for camelina products also include the equine and pet food industry as well as for cattle and dairy production. Smart Earth’s plant-breeding activities will provide traits that ensure maximum yield and profitability to benefit farmers. Soon-to-be released varieties will offer non-GMO herbicide resistance and a significantly larger seed size.
A wheat leaf rust resistance gene that’s been overcome by virulent pathogens is called a “defeated gene,” according to Brent McCallum, a pathologist with Agriculture and Agri-Food Canada. But its counterparts – resistance genes that still prove effective against pathogens in the field – are not called “victorious genes.” They’re known as “durable genes” that can be depended on for good control, year after year.
Research trials in the U.S., and more recently at the University of Saskatchewan, are proving what’s old is new again. In this case, the use of “old” herbicides such as Avadex, Fortress and Edge are making a comeback of sorts in a weed management system that’s been dubbed “herbicide layering.” According to Clark Brenzil, who coined the term, herbicide layering is simply utilizing two to three herbicides in sequence to tackle tough-to-control weeds and to stave off weed resistance.Indeed, herbicide tank mixtures and/or a program that utilizes a residual product in a sequential program are now the recommended practice for delayed herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide,” Brenzil notes. “Wild oats and cleavers are two great examples of this.” But even simply switching one herbicide out for another, ie. rotating herbicides, while perhaps delaying the onset of herbicide resistance, still results in selection pressure. Today, many in the industry are starting to stress the importance of using multiple modes of action and tank mixing. “The extension message is to use multiple modes of action together in weed control programs,” says Mike Grenier, Canadian development manager with Gowan. “But it’s not only using tank mixes – it’s using products in sequence, for instance to look at the soil residual herbicides as part of this management program.” The idea is simple: apply different modes of action within a season – layering – and rotate chemistries through the crop rotation. As it turns out, Avadex, Edge and Fortress herbicides fit very well into this strategy. “In our scenario, you would have Group 8, Avadex or Fortress, being soil applied either in the fall or in the early spring followed with a post-emergent program during the growing season,” Grenier notes. “So in this case of Group 1 or Group 2 product use, Avadex is the pre-emergent layer providing resistance management against wild oats.” In trials, Gowan maintains that Avadex and Fortress can provide about 90 per cent control of wild oat, while Edge (Group 3) provides 70 to 80 per cent suppression. “Then you have a post-emergent program working on a much lower level of [weed] population, so lower selection pressure. So now we have the control level approaching close to 100 per cent.” Studies find an added bonusLed by Christian Willenborg, weed scientists at the University of Saskatchewan (U of S) have been conducting research to determine if herbicide layering proves beneficial. “We have some good information in peas and some really good information in canola,” says Eric Johnson, U of S research assistant. “Graduate student Ian Epp’s research in canola showed some benefits, even with Roundup Ready canola, to be using clomazone pre-emergent to improve cleavers control.” In the studies on cleavers weed control in canola, the researchers used three different modes of action – applying clomazone pre-emergent, then followed by either Clearfield, Roundup or Liberty tank mixed with quinclorac. “Even with the Roundup system, which is already pretty effective on cleavers, we found that using three different modes of action provided weed control benefits, and some yield benefits which totally surprised us,” Johnson notes. (See Fig. 1.) The team also did studies on managing Group 2 resistant cleavers in field pea. “What we found was that if we put a pre-emergent down, that suppressed the cleavers somewhat. But then we came in and followed with a post-emergent, and we ended up with better than 80 per cent control.” (See Fig. 2.) Going forward, the U of S is starting some work on managing Group 2-resistant wild mustard and Group 2-resistant kochia in lentil. The big pictureBrenzil says herbicide layering has some merit for everyone. “What the U of S research has found is that if you have control taking place right at the point where the weed is germinating [with the pre-emergent], you’re going to get better yield response out of your crop, rather than waiting for the three- or four-leaf stage when there’s already been some competitive effect of that weed on that crop,” he notes. “By having a soil active, even if it’s not doing a fantastic job of controlling the weeds, it’s suppressing the influence of those weeds on that crop, and you’re getting a bit of a yield bump by having herbicide in the soil along with your foliar product that’s coming a little later.” An added bonus, Brenzil adds, is that by using a herbicide layering program, you’re making a pre-emptive strike against herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide for effective management, such as wild oats and cleavers.” At the Herbicide Resistance Summit held March 2 in Saskatoon, Jason Norsworthy made a comment about the “treadmill” of using one weed chemistry and the very real threat of developing herbicide resistance as a result. Brenzil explains: “If you use one chemistry to death and then you allow your weed populations to get very high again, then you’re just starting from square one to select for the next Group that you’ll overuse, and so on and so on, until you paint yourself into a corner and there are no herbicide options left. At this point, the only management option left will be seeding the field to a forage crop and cut for hay until the seedbank is exhausted.” With herbicide layering, “If you’ve got your soil active products on the ground, then you come in with your foliar and you’ve got a mix of two foliars that could still control that same weed – now you have three active in there of different families,” he adds. “You avoid that overuse and you don’t allow selection pressure to accumulate.”   This story originally appeared in the June 2016 issue of Top Crop Manager West.
With the confirmation of glyphosate-resistant (Group 9) kochia across the Prairies, a renewed focus on best chemfallow management practices is needed.
Is there an interaction between seeding rate of pea and lentil, disease incidence, and fungicide effectiveness? This question was the driving force behind an Agricultural Demonstration of Practices and Technologies (ADOPT) Program project.
Using several herbicides with multiple modes of effective action are essential in combatting resistance, minimizing the weed seedbank and preparing fields for success. A planned herbicide program using multiple modes of action is the best strategy for these tough-to-control weeds. An herbicide that offers multiple modes of action to help manage a variety of broadleaf weeds that can also be used in various tank-mixes to control glyphosate-resistant species will help address the challenges of weed resistance in both the current and future growing seasons. For example, last year, a group of growers in Eastern Canada tested Armezon PRO, a new Group 15 and Group 27 herbicide. With a wide application window from early post-emergence to the eight-leaf stage in glyphosate-tolerant corn and the ability to easily tank-mix with additional products, growers were able to customize their weed management to meet their needs. When tank-mixed with atrazine in glyphosate-tolerant corn, Armezon PRO provides four modes of action. Customizing weed management strategies is especially useful when weather prevents getting into the field for a pre-emergent application. Managing problem weeds with multiple modes of action provides residual activity, reducing the weed seedbank and setting up fields for the next season. 
With the 2017 growing season upon us, here’s a look at the latest seed treatments, foliar fungicides and label updates. Product information is provided to Top Crop Manager by the manufacturers.
Premier Tech, an international leader in active ingredients for sustainable agriculture and horticulture, will take the lead in the final steps to bring to full scale the manufacturing and commercialization of a selective bioherbicide. In January, the Horticulture and Agriculture Group signed a license agreement with Agriculture and Agri-Food Canada (AAFC) to finalize the development and commercialization of a product formulated from an indigenous fungus (Phoma macrostoma). Over nearly ten years, the federal department invested millions of dollars in research on this fungus and its compounds (macrocidins), which can eliminate broadleaved weeds, particularly dandelions. This breakthrough discovery has been patented in several countries and is commercially registered in the U.S. and Canada.
The late harvest in fall 2016 created more than just delays in crop removal – fields were dirty with weed growth and there was limited time for fall herbicide application. As a result, many farmers are expecting weedier fields this spring and will need to be diligent in using the best weed control strategies including pre-seed herbicides and the best in-crop solutions. To assist farmers in what will likely be a more challenging spring battle with weeds, Dow AgroSciences has announced that the Diamond Rewards herbicide offer that was previously only available to Nexera customers will be open to all growers seeding any Roundup Ready and Clearfield canola varieties this spring. Effectively immediately, with a minimum purchase of 240 acres (6 cases) of Eclipse, any Roundup Ready canola grower can qualify for the $2.00 per acre rebate. Similarly, with a minimum purchase of 240 acres (6 cases) of Salute, any Clearfield canola grower can qualify for the $2.00 per acre rebate. Nexera canola growers will continue to receive the rebate with no minimum purchase requirement. Farmers must be registered for the Dow AgroSciences Diamond Rewards program and purchases must be made between December 1, 2016 and November 30, 2017 to qualify. Click for more information on Eclipse and Salute.  
Industrial fertilizers help feed billions of people every year, but they remain beyond the reach of many of the world’s poorest farmers. Now, researchers have engineered microbes that, when added to soil, make fertilizer on demand, producing plants that grow 1.5 times larger than crops not exposed to the bugs or other synthetic fertilizers. | READ MORE
Just over 20 years ago, researchers initiated the first bioherbicide research and development program in the country at Agriculture and Agri-Food Canada (AAFC) in Saskatoon. Led by Karen Bailey (who recently retired), the program has made significant advancements in bioherbicide development for horticulture and turf crops, and more recently, promising solutions for agriculture. Bioherbicide product development is a welcome addition to the integrated weed management toolbox for crop production. Biopesticides are classified as “reduced-risk” products by the Pest Management Regulatory Agency (PMRA).
Syngenta Canada Inc. has announced the launch of Aprovia Top fungicide, offering Canadian potato growers a new tool for foliar early blight control and brown spot suppression. Early blight, caused by the Alternaria solani fungus, is found in most potato growing regions. Foliar symptoms include small, brown, irregular or circular-shaped lesions that form on the potato plant’s lower leaves later in the season. The disease prefers warm, dry conditions to develop, and can be more severe in plants that are stressed and weakened. Brown spot, caused by the Alternaria alternata fungus, is closely related to early blight and is found wherever potatoes are grown. Unlike early blight, brown spot can occur at any point during the growing season, producing small, dark brown lesions on the leaf surface. Aprovia Top fungicide combines two modes of action with preventative and early curative activity on these two key diseases. Difenoconazole (Group 3) is absorbed rapidly by the leaf and moves from one side of the leaf to the other to protect both surfaces against disease. Solatenol (Group 7 SDHI) binds tightly to the leaf’s waxy layer and is gradually absorbed into the leaf tissue to provide long-lasting, residual protection. Aprovia Top is available now for use in 2017 production. In potatoes, one case will treat up to 40 acres.
Prairie farmers primarily use urea (46-0-0), anhydrous ammonia (82-0-0), or liquid urea-ammonium nitrate (UAN) (28-0-0) as their nitrogen (N) fertilizer sources. Nitrogen fertilizer can be lost due to volatilization, denitrification or leaching, depending on how the N is applied and the weather conditions after application. 
Gowan Canada has added volunteer canola to the Permit WG Herbicide label in time for spring 2017. Permit is registered for pre-emergent and post-emergent use in dry beans, and post-emergent use only in corn. Data generated by independent contract researchers has consistently shown high levels of extended residual control of volunteer canola from both pre and post-emergent applications. For more information on Permit for volunteer canola, growers are urged to contact their local retailer.
Small planes have been flying over local farms and taking aerial photos for decades. Now, individual farmers are able to get an aerial view of a field using a small remote-controlled drone equipped with a camera. But Agriculture and Agri-Food Canada (AAFC) has been receiving information from a far more sophisticated data collection network for at least the past 30 years, according to Leander Campbell. Campbell, a geographer who specializes in geomatics, works as a remote sensing specialist with the Earth Observation team at AAFC. He says most of his work is on the AAFC Annual Space-Based Crop Inventory. He gets his data in the form of imagery from satellites and uses it to produce an accurate national crop map. “The crop map, the one I work on, is at a 30 metre resolution so each pixel is a 30 metre by 30 metre square. It covers all of Canada,” he explains. Campbell adds one of the crops mapped in year one of the crop inventory in 2009 was soybeans. Since then, the data has shown how the crop is spreading west and north on the Prairies.Campbell extracted only the soybean fields (in yellow) from Manitoba crop maps for the years 2009 and 2012.Photo courtesy of Leander Campbell, AAFC. The network Campbell gets his data from consists of several international satellites. The American satellite Landsat-8 provides optical data to create crop maps anyone can download. In addition to these data, Campbell’s team also uses microwave data from the Canadian RADARSAT-2 satellite. The combination of optical and microwave data has been shown to produce more accurate maps than maps created from either single source. These maps are created and validated using data collected by people in the field. For the Prairies, “we have agreements with the provincial crop insurance companies,” Campbell says. “It’s not a perfect system but we’re about 85 per cent and 90 per cent accurate and working to improve that.” Satellites don’t stay in orbit forever and Campbell says a backup is always an asset. Canada has plans to launch a constellation of three microwave satellites in 2018, the RADARSAT Constellation Mission (RCM), to gather data that’s even more detailed and precise than what’s available now. “There are more uses than I ever thought of,” Campbell says. For instance, crop placements, crop monitoring, research, commodity marketing, land use management and even flood forecasting in Manitoba. Microwave data collected by the European SMOS (Soil Moisture and Ocean Salinity) satellite allows Campbell’s team to operationally measure soil moisture in the top five centimetres of soil. He says most people don’t realize the Earth naturally radiates very low-level microwave energy and a satellite in space can pick up the variations in waves. Water absorbs microwave energy. When the microwaves radiate out from the Earth and pass through the soil, some of them are captured by moisture in the soil.  According to Campbell, in September 2015, Statistics Canada did not do a farmer survey, opting to use AAFC climate data to complete their crop yield forecast. Satellite data can describe how agriculture land is changing or evolving over the years, whether it’s farmland expanding by eliminating small woodlots or urban expansion covering agricultural land. These phenomena can be monitored year over year using the AAFC crop maps. Campbell has compiled maps that helped document the areas where clubroot is developing in canola. Scott Keller, a farmer from Camrose County in Alberta, contacted AAFC, asking Campbell if he could map Camrose County to determine how often canola was grown in particular fields. Keller wanted to determine which fields grew canola most often, either in a tight rotation over multiple years or in succession, in order to determine if there was a correlation between the escalation of clubroot and the rotation schedule.Map created by Campbell to monitor canola crop frequency in Camrose County, Alta. Photo courtesy of Leander Campbell, AAFC. That’s just one way satellite data can support crop management. Campbell says he’s confident that as computer technology and Internet costs come down, AAFC will be able to create more products from data because they can monitor specific areas once or several times over a growing season, or over years. Campbell and his six colleagues who create the crop maps, soil moisture reports and the normalized difference vegetation index (NDVI) reports have an international presence as well. “I know some of our maps are incorporated into more global crop assessments for global market information, especially the NDVI maps,” Campbell says. He explains that several nations around the world use satellite imagery to monitor their own crops. They meet on a monthly basis and compare data on major crops like corn, wheat, rice and soybeans through an organization called GEOGLAM. The group’s website states its vision is to “use coordinated, comprehensive and sustained Earth observations to inform decisions and actions in agriculture through a system of agricultural monitoring.” https://cropmonitor.org Canadian farmers can access existing maps and data products online from the AAFC website. Because these maps are highly detailed, producers may experience difficulty downloading them on devices while in the field, but they can still view them online. According to Campbell, that’s the sort feedback he needs to hear from farmers. “In our little world we have all these high-end computers and that works fine for us, but it may not be the most practical thing for others,” Campbell says. And, he’s looking forward to finding more ways to help farmers and make the website more user-friendly. As satellite mapping matures, both farmers and scientists will view agriculture in new ways and Campbell is enthusiastic about the possibilities. “It’s a really exciting time to be in our field,” Campbell says. This article originally appeared in the June 2016 issue of Top Crop Manager West
Timely information about drought conditions can help agricultural producers, agribusiness, government planners and policy-makers, emergency preparedness agencies and others to better plan for and proactively respond to drought. The Canadian Drought Monitor tracks a wide range of drought-related information and boils it all down to easy-to-understand, online monthly maps.“The Canadian Drought Monitor is kind of an early warning system. It provides a clear picture of what is occurring in near real-time. We’re tracking drought conditions continuously so that we know where we’re at and we can respond quicker to problems,” explains Trevor Hadwen, an agroclimate specialist with Agriculture and Agri-Food Canada (AAFC). AAFC leads the Canadian Drought Monitor initiative, working in close collaboration with Environment Canada and Natural Resources Canada.He notes, “There is a very large process around developing the Drought Monitor maps that is unique to this particular product. It is not as simple as feeding climate data into a computer and having it spit out a map.” That’s because drought is difficult to measure. It can creep up on people as the cumulative effects of ongoing dry conditions gradually mount up. Its effects are often spread over broad areas. And different groups define drought conditions differently, depending on their interests and needs.So, the Canadian Drought Monitor draws together diverse information like precipitation amounts, water storage levels, and river flow amounts, as well as information about drought impacts on people. And it combines various drought indicators used by the agriculture, forestry and water management sectors into a single composite indicator.“All that information is put together to create one easy-to-read map product, with just five classes of drought or dryness. Users can get a very clear picture of the areal extent and severity of the drought with one look at the map,” Hadwen says.Drought classificationThe five drought classes are: D0, abnormally dry – an event that occurs once every three to five years; D1, moderate drought – an event that occurs every five to 10 years; D2, severe drought – an event that occurs every 10 to 20 years; D3, extreme drought – an event that occurs every 20 to 25 years; and D4, exceptional drought – an event that occurs every 50 years. The monthly maps are available in an interactive form that allows users to see the changes in drought location, extent and severity over time.The Canadian Drought Monitor provides useful information for people in many sectors. Hadwen gives some examples: “For agriculture, the information helps with things like where people might want to market grains, where there might be shortages, where there might be areas of good pasture, where livestock reductions might be taking place, all those types of things. The information is also very valuable outside of agriculture, in terms of water supplies, recreational use, forest fires – the list can go on for quite a while.”The Canadian Drought Monitor maps feed into the North American Drought Monitor maps. “The North American Drought Monitor initiative started about 12 years ago. The U.S. had been doing the U.S. Drought Monitor project for a number of years, and Mexico and Canada were interested in doing similar projects,” Hadwen notes. “So we joined forces to create a Drought Monitor for the continent.” All three countries use the same procedures to monitor, analyze and present drought-related information.The continent-wide collaboration provides a couple of big benefits. “Number one, drought doesn’t stop at the borders,” he says. The North American initiative provides an integrated view of drought conditions across the continent.“Also, the Drought Monitor is extremely powerful in terms of the partnerships that have developed and the linkages to some of the best scientists in North America. We share ideas and build off each other, developing better and more accurate ways of assessing drought. We can utilize some of the information generated from U.S. agencies, like NOAA [National Oceanic and Atmospheric Administration] and the National Drought Mitigation Center, and agencies in Mexico. This collaboration effort helps increase the efficiency of the science and the technical aspect of drought monitoring.”According to Hadwen, the continental collaboration has been really helpful in building Canadian agroclimate monitoring capacity. “Over the last decade or so we have certainly matured a lot, and we’ve started to develop some really interesting tools and applications for Canadian producers and agricultural businesses to help deal with some of the climate threats to the farming industry, including droughts, floods, and everything else,” Hadwen says.AAFC’s Drought Watch website (agr.gc.ca/drought) provides access to the Canadian Drought Monitor maps and to other agroclimate tools such as maps showing current and past information on precipitation, temperature and various drought indices, and the Agroclimate Impact Reporter (scroll down for "When complaining about the weather makes a difference"). When complaining about the weather makes a differenceIf you love to talk about the weather's impacts on your farming operation, the Agroclimate Impact Reporter (AIR) could be for you. If you want your comments about these impacts to make a difference, then AIR is definitely for you. And if you want to find out how the weather is impacting agriculture in your rural municipality, your province, or anywhere in Canada, then AIR is also for you.AIR is a cool online tool developed by AAFC that grew out of a previous program to collect information on some drought impacts. "We have had a program in place to monitor forage production and farm water supplies in the Prairies for well over 15 years. Then about three years ago, we started to develop a tool to replace that program – a tool that would be national in scope and that could gather information on a whole range of agroclimate impacts," Hadwen explains.AIR taps into a volunteer network of producers, AAFC staff, agribusiness people and others. "We use crowd-source data for this, gathering information from a whole wide variety of people. Some of them we know through our registered network, and others have a subscription to our email box and provide comments to us on a monthly basis," he says."We're trying to gather as much information from as many people as possible on how weather is impacting their farming operations. We ask the participants to do a short [anonymous] monthly survey, usually about 25 quick multiple choice questions, to let us know how things are going."AIR is collecting impact information in several categories including: drought, excess moisture, heat stress, frost, and severe weather (like tornadoes and hail storms)."We plot that information and produce a whole bunch of individual maps showing very subject-specific information from each survey question," Hadwen notes. "We also have a searchable online geographic database. On a map of Canada, you can zoom in on different regions and see where we're getting reports of a large number of impacts or not as many impacts. You can even drill down into that map and see the exact comments that we are getting from [the different types of respondents, in each rural municipality]."The information collected through AIR provides important additional insights into the weather conditions and related issues and risks. He says, "Sometimes the data we have in Canada isn't as fulsome as we would like, and sometimes it doesn't tell the whole story. For instance, the data [from weather stations in a particular area] might show that it didn't rain for a very long period and the area is in a very bad drought, but the producers in the area are telling us that they got some timely rains through that dry period that helped their crops continue to grow. Or, the data might show that we received a lot of rain in a season – like we did in 2015, if you look at the overall trend – but the farmers are telling us that there were big problems in the spring. So, combining both those types of information certainly helps draw the whole story together a little better."AIR information feeds into the Canadian Drought Monitor to help in assessing the severity of drought conditions. As well, the AAFC's Agroclimate group incorporates AIR information into its regular updates to AAFC's Minister and senior policy people; it helps them to better understand what is happening on the land, and that knowledge can help in developing policies and targeting programs.Information from AIR is also valuable for businesses that work with producers, such as railroad companies wondering about regional crop yields and where to place their rail cars, and agricultural input companies wondering if they need to bring in extra feed or fertilizer.AAFC is in the process building AIR into a national program. "We want to collect agroclimate impact information from right across the country. We have a history in the Prairie region, so we have more Prairie producers providing information. We've made inroads into B.C., so we're getting some reports from there already," Hadwen says. "[Now] we're going out to Atlantic Canada and Ontario. And over the next couple of years, we'll be expanding AIR right across the country."If you are interested in becoming a volunteer AIR reporter, visit www.agr.gc.ca/air.This article originally appeared in the June 2016 issue of Top Crop Manager West.
Italy is proposing that pasta packaging show where the wheat was grown and milled. Canadian exporters and farmers fear the move would depress prices in Canada, the biggest global durum exporter, as it would require Italian pasta makers to segregate supplies by country. Italy’s move comes as a Canada-Europe free trade deal moves to final stages of approval. | READ MORE    
Leaders from the Canadian Federation of Agriculture (CFA) strengthened their Canada-U.S. connections and underscored the benefits of NAFTA last week during meetings with American Farm Bureau representatives in several states. The five-day tour included visits to California, Kansas, Iowa and Wisconsin.“What we've learned from these discussions is that U.S. farmers depend on NAFTA as much as Canadian farmers do. No one wants to jeopardize the agreement for fear of losing the significant benefits accrued by all parties including well established markets for agriculture and agri-food products,” says CFA President Ron Bonnett.Bonnett said that the Wisconsin Farmers Union also supports NAFTA and were in agreement that the diafiltered milk issue was a scapegoat for the larger problem, which is the current worldwide glut of milk on the market."The key take-away from our U.S. meetings is that we now have a good chance to resolve some of the ongoing barriers to trade that stand apart from tariff rules. Farm groups in Canada and U.S. have long called for harmonized regulations," said Bonnett.The CFA will continue to work with its members and government officials to seek and implement actions that will modernize North American trade, leading to greater value for all NAFTA partners.
Urban sprawl has some Ontario farmers, agricultural organizations and even politicians looking to the north as the future for agriculture in the province. It is, after all, where producers can find cheaper land – typically priced between $1,000 to $1,500 per acre – and lots of it.
The Earth’s capacity to feed its growing population is limited – and unevenly distributed. An increase in cultivated land and the use of more efficient production technology are partly buffering the problem, but in many areas increasing food imports solves it. For the first time, researchers at Aalto University have been able to show a broad connection between resource scarcity, population pressure, and food imports, in a study published in Earth’s Future. “Although this has been a topic of global discussion for a long time, previous research has not been able to demonstrate a clear connection between resource scarcity and food imports. We performed a global analysis focusing on regions where water availability restricts production, and examined them from 1961 until 2009, evaluating the extent to which the growing population pressure was met by increasing food imports,” explains postdoctoral researcher Miina Porkka. The researchers’ work combined modelled data with FAO statistics and also took into consideration increases in production efficiency resulting from technological development. The analysis showed that in 75% of resource scarce regions, food imports began to rise as the region’s own production became insufficient. Even less wealthy regions relied on the import strategy – but not always successfully. According to the research, the food security of about 1.4 billion people has become dependent on imports and an additional 460 million people live in areas where increased imports are not enough to compensate for the lack of local production. Opportunities to sustainably improve food production The big issue, says co-author Dr Joseph Guillaume, is that people may not even be aware that they have chosen dependency on imports over further investment in local production or curbing demand. “It seems obvious to look elsewhere when local production is not sufficient, and our analysis clearly shows that is what happens. Perhaps that is the right choice, but it should not be taken for granted.” The international food system is sensitive and price and production shocks can spread widely and undermine food security – especially in poorer countries that are dependent on imports. As a result, further investments in raising production capacity could be a viable alternative. Especially in sub-Saharan Africa and India, there are opportunities to sustainably improve food production by, for example, more efficient use of nutrients and better irrigation systems. Miina Porkka emphasises that the solutions will ultimately require more than just increasing food production. “Keeping food demand in check is the key issue. Controlling population growth plays an essential role in this work, but it would also be important to enhance production chains by reducing food waste and meat consumption. Since one quarter of all the food produced in the world is wasted, reducing this would be really significant on a global level.”
While making the rounds at industry events this winter, I noticed one topic was sure to draw a crowd every time. It seems producers, suppliers and other industry stakeholders are eager to soak up whatever information they can on international markets and trade – and with good reason.
Premier Brad Wall is travelling to Washington D.C. next week to raise awareness of the importance of Canada-U.S. trade and the benefits of the North American Free Trade Agreement (NAFTA). “With a new administration in place in Washington, it is vital that we highlight the value of free trade and the risks associated with protectionism.  Saskatchewan is a trade dependent province.  We need to do everything we can to ensure our exporters have access to our most important market,” says Wall in a press release. The visit will last from April 3 to April 6, where Wall will meet with Senators, members of the House of Representatives, and senior administration officials. On April 5 Wall will deliver a keynote address at the Heritage Foundation, where he will also participate in a round table discussion on trade, energy and economic policy. The United States is Saskatchewan’s largest customer, accounting for about half of the province’s total exports, shipments valued at $12.9 billion in 2016.  Last year, the value of Saskatchewan’s exports to just two states – Minnesota and Illinois – surpassed what the province exported to China.  Meanwhile, the U.S. was the source of 83 per cent of Saskatchewan imports in 2016. Last year, the U.S. had a trade surplus with Canada, the only trade surplus it posted among its five largest customers. In addition to promoting the importance of trade, Wall will tell the Saskatchewan story, emphasizing the province’s role as one of the world’s top producers of energy, food and fertilizer and its status as a research leader in energy, carbon capture and storage and biosciences.
Farmers of all types, from dairy to fruit to livestock, contribute to the economy and to the healthy lives of Canadians. The Canada Revenue Agency (CRA) wants to help make filing your income tax and benefit return easier so you can save your time and energy for the harvest. Claiming expenses Farmers can generally deduct any reasonable current expense from farming income, including interest on loans and losses, and the cost of fertilizer, feed, veterinary fees, and materials to pack and ship goods. Other eligible expenses are machinery rental, electricity, insurance, and motor vehicle expenses. To find out more, go to cra.gc.ca/smallbusiness and click on “Report business or professional income and expenses.” When it’s time to harvest your crops, you may need a helping hand (or two) out in the field and if you do hire someone, the cost may be claimed as an expense. If the person you hire is a qualified Red Seal trade apprentice, like an agricultural equipment technician, you may also be able to claim the apprenticeship job creation tax credit. This non-refundable investment tax credit is 10 per cent of the apprentice’s salary or wages. The maximum credit an employer can claim is $2,000 per year for each eligible apprentice. For more information about the apprenticeship job creation tax credit, go to cra.gc.ca/smallbusiness and click on “Investment tax credit (line 412),” and then on “Apprenticeship Job Creation Tax Credit (AJCTC).” Reporting income or loss As with any business, not every year will be profitable. When your farming business expenses are more than your farming business income in a year, you have a net loss. You can transfer a farm loss amount back to any of the preceding three years or forward to any of the next 20 years to deduct the loss from income for another year. For more information on farm losses and how to calculate and apply them, see Chapter 6 of CRA Guide T4003, Farming and Fishing Income. Eligible farmers who dispose of breeding livestock in a tax year because of drought or flood can exclude part of the sale proceeds from their income until the next tax year, under the livestock tax deferral provision. This provision also covers breeding horses over 12 months of age and certain breeding bees. For more information, see Chapter 2 of Guide T4003. To avoid the stress of ploughing through countless invoices and receipts, stay on top of your record keeping during the year. Records of your business-related expenses will support your claims. These records need the same constant and conscientious care as your crops. Without supporting documents, the CRA may not allow a credit or deduction. To learn more, go to cra.gc.ca/records. Completing your return The legislated deadline for most Canadians to file their income tax and benefit return is April 30. Since that date is a Sunday in 2017, the CRA will consider your return as filed on time and your payment to be made if the CRA receives your submission or it is postmarked no later than May 1. Self-employed individuals and their spouses or common-law partners have until June 15 to file their returns. However, if those persons have a balance owing to the CRA, that amount is due no later than May 1. If you’re facing cash flow problems and can’t pay your tax balance owing in full, you may be able to pay off your tax debt in more than one payment. You can set up a pre-authorized debit payment agreement through the CRA’s My Business Account or My Account service or by calling 1-888-863-8657. To learn more about your payment options, go to cra.gc.ca/payments. The CRA has a list of certified tax preparation software on its website, including some software that is free. Last year, more than 84 per cent of individuals filed their tax return online. File online, so you can spend less time working on your return and more time doing the things you love. To find out more, go to cra.gc.ca/netfile. When filing online, you can save valuable time by using the CRA’s auto-fill my return feature. This feature automatically fills in parts of your return. For more information, go to cra.gc.ca/auto-fill. If you sign up for online mail, you can find out the status of your return immediately after you file your return and receive your notice of assessment the next day. For more information, go to cra.gc.ca/express-noa. Protect yourself When it comes time to file your return, don’t risk your reputation and your business by intentionally underreporting your income. If you get caught evading tax, you may face fines, penalties, or even jail time. It’s not worth the risk. Don’t participate in the underground economy. For more information, go to cra.gc.ca/undergroundeconomy. If you make a mistake or omission, the CRA offers you a chance to set things right under the Voluntary Disclosures Program. If you make a valid disclosure before you know about compliance action taken against you by the CRA, you may only have to pay the tax owing plus interest. You can get more information about the program at cra-arc.gc.ca/voluntarydisclosures. Stay on top of the latest CRA news and tax tips by following @CanRevAgency on Twitter.
The Canadian Agri-Food Trade Alliance (CAFTA) has released a report that outlines the potential for expanding trade in China: a market that accounted for $5.6 billion in Canadian agri-food and agri-food exports last year. China is Canada’s second-largest two-way trading partner (after the U.S.) and is projected to be the world’s largest agri-food importer by 2021. The report, entitled “Chasing China - Expanding Canada’s Agri-Food Exports to China,” describes the growing opportunity in the country for Canada’s agri-food exports. Currently, agri-food exports to China are already significant – China demands one third of Canada’s canola exports and represents an important market for soybeans, pulses, wheat, barley, beef and pork. Despite the large and growing demand for Canadian agri-food products in China, the report points out that Canadian exporters continue to face serious barriers that are hampering growth. For example, tariffs and non-tariff barriers reduce the range of products that can be exported and raise uncertainty for exporting businesses. While overcoming the barriers will be tough for many agri-food commodities and value-added food products Chinese production can’t keep up with demand and there are opportunities to improve trade. Tariff elimination and tariff quota expansion for wheat, barley, pulses, soybean, canola as well as sugar and sugar-containing products would provide opportunity for the Canadian industry. In some cases, Canada faces a significant trade imbalance with China, particularly in value-added prepared foods and is at a competitive disadvantage compared to other countries like Australia who have signed free trade agreements. The full report can be found here.
The European Union has voted to ratify the Comprehensive Economic Trade Agreement (CETA) while asking the Canadian government to address important outstanding issues.“Getting the CETA through the European Parliament is a tremendous step forward the farm and food sector that is growing through exports – it’s good news for trade and speaks to the Canadian government’s efforts so far,” said Brian Innes, president of the Canadian Agri-Food Trade Alliance (CAFTA). “But we need to make sure that the agreement delivers on its promises. Non-tariff barriers will prevent a large part of the agri-food sector from using the agreement if they are not resolved.”The agreement holds huge potential for growth and has been supported by CAFTA since negotiations began eight years ago. It will eliminate EU tariffs on 94 per cent of Canada’s agri- food products, and could drive additional exports of up to $1.5 billion, including $600 million in beef, $400 million in pork, $100 million in grains and oilseeds, $100 million in sugar-containing products and a further $300 million in processed foods, fruits and vegetables.Sticking points remain, related to EU treatment of crop input products, such as biotechnology, which need to be addressed before the agreement comes into force. In addition, CAFTA wants the government to commit to a strong advocacy strategy and a comprehensive implementation plan for agriculture and agri-food exporters that will deliver real access for Canadian companies once the trade doors are opened.
The Prairie Pest Monitoring Network (PPMN), now in its 20th year, continues to provide timely crop insect pest risk and forecasting tools for growers and the industry across Western Canada. As technology and forecasting tools advance, so does the ability of the network to provide relevant insect pest information related to scouting, identification and monitoring tools and information, plus links to provincial monitoring and support relevant to the Canadian Prairies.
New Holland Agriculture has set a new World Record by harvesting 16,157 bushels of soybeans in eight hours with the CR8.90 combine. The record-breaking performance, which took place in the Bahia State of Brazil, was certified by independent adjudicator RankBrasil. The performance On record setting day, harvesting started at 10:30 am and finished at 5:30 pm, having harvested approximately 222 acres (90 hectares). CR8.90’s average throughput was 2,020 bushels/hour in a crop yielding an average of 72.6 bushels/acre, and 17 per cent average moisture content. The record-setting performance and efficiency was achieved by harvesting 73.5 bu of soybean per gallon of fuel. The CR series The CR8.90 follows the footsteps of the range topping CR10.90, which proved it is the world’s highest capacity combine when it captured the World Record for harvesting an impressive 29,321 bushels of wheat in eight hours in 2014 – a title it holds to this day. For more information on the CR series, click here.
To serve a growing farm equipment market in Eastern Canada and the United States, Väderstad Sales Inc. has opened a new office and parts distribution warehouse in Cambridge, Ont. The Swedish farm equipment manufacturer offers unique and cost effective equipment to progressive farmers in 30 countries worldwide. The new Väderstad location signals a renewed focus on the North American farm equipment market. Manufactured in Sweden, all Väderstad farm equipment is built to create optimal field conditions. Väderstad’s North American equipment lineup includes drills, planters and cultivators. Equipment models available include: Drills: Spirit, Rapid and BioDrill (attachment to convert tillage equipment into cover crop drill) Cultivation equipment: Carrier, Carrier X, Carrier L, Carrier XL, Swift, Opus, TopDown and Cultus, ranging from 3.5 m to 12 m widths Planters: Tempo planters ranging from 4-16 rows with the most versatile precision high speed lineup in the market The new Väderstad parts warehouse supports all dealers and customers across North America, including 28 Eastern Canada dealer locations. Visit vaderstad.com/ca to find your local dealer or for more information about Väderstad’s innovative farm equipment design and lineup.
Safe storage of grain on farm is a key to successful farm management. Harvested grain may be put into bins at acceptable moisture contents, but is it safe? Knowing what temperature and moisture contents are acceptable is critical for the safe storage of grain. The following information sheds some light on what to watch for in stored grain during springtime conditions. More stored grain goes out of condition or spoils due to lack of temperature control than for any other reason. It cannot be emphasized enough that the control of temperature in a bin of stored grain is absolutely critical. Geographically in Western Canada, we are located in a region where we get North America’s most severe temperature fluctuations from one season to the next. The transition between these extremes can happen rapidly or gradually. It is during these transition periods when stored grain is most at risk, due to a phenomenon called moisture migration. Moisture migration happens inside the bin when the difference in grain temperature and the outside air is the most extreme. Properly drying and cooling your grain in the fall is crucial to preserving grain quality through the fall and winter months, and well into spring. If your grain was harvested in hot, dry conditions in the fall you must be careful to bring down the temperature of that grain to enable safe storage through the winter. Likewise, if due to weather conditions at harvest time you have put your grain in the bin at a higher moisture content than usual, you must also be careful to lower the temperature to a point where you can safely store the grain over the winter. As outside temperatures begin to rise in springtime, continued monitoring of your grain bins is required. In spring, as the ambient temperature of the air outside the bin starts to warm up the bin wall also tends to warm, which in turn warms the adjacent grain. This results in the air adjacent to the bin wall warming up as well. At this point the warm air creates a moisture current that moves upward through the grain on the outside perimeter of the grain mass. As this air warms up and starts to move, it will pick up moisture from the grain and carry it upwards. As the moistened air nears the top of the bin, it moves toward the center where it encounters cooler grain temperatures. This air cools down and starts to move down the center of the bin, laden with the moisture it accumulated during the upwards cycle along the bin wall. During this part of the cycle the air starts to release this moisture. The lower the air migrates in the bin, the more moisture it will give off. Therefore, high moisture due the condensation of the cooling air occurs at the bottom center of the bin. In and around this area of high moisture you can expect grain spoilage to occur. If grain is to be stored in the bin for any length of time it is important to bring the grain temperature up to a point that will prevent the abovementioned from happening. In order to accomplish this, it is recommended that the grain temperature in the bin be raised to approximately 10 C. It is important as a producer to consult safe storage charts that will show what length of time you can store the grain at its’ current moisture and temperature, continued monitoring is vital. Aeration (warming) at this point should be accomplished with .05 to .1 cfm/ bus, and only until the desired, uniform temperature is achieved throughout the bin. From this point forward going into warmer temperatures, the temperature of the grain should be monitored throughout the summer and controlled accordingly using aeration. By utilizing aeration inside of grain bins you are able to minimize the effects of moisture migration and maximize the benefits of temperature control within your bin. In circumstances where you need to warm grain to finish drying in springtime conditions, it is recommended that the temperature be brought back up gradually. This will help preserve the quality of the grain kernel. Once the grain has been successfully dried, it is recommended that when possible the grain be cooled again to be stored at approximately 10 C. In summary, monitoring moisture and temperature conditions in your bin, and having an aeration system in place to help regulate these conditions, is key to successful grain storage.
Spraying chemicals has expanded far beyond in-crop herbicides to include fungicides, pre-harvest, and other late season applications in many fields. Challenges arise as growers transition to spraying at different times of the year and into different crops, canopy heights and densities.
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences."The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
The Canadian pickup truck market caters to the multiple needs of those in need of a truck for either work or personal use. But pickups that serve both the workplace and family are becoming the norm. Trying to offer buyers an unbiased perspective is one of the reasons I started the Canadian Truck King Challenge 10 years ago. Each year, a group of journalist judges continue to fulfill that original mandate: testing pickup trucks and vans the same way owners use them.
If you leave your pivot exposed all through the winter, you’re going to be working on it a lot longer in the spring,” says Jeff Ewen, an irrigation agrologist with the Saskatchewan Ministry of Agriculture in Outlook, Sask. To help producers prevent damage from winter’s storms and bone-chilling temperatures, Ewen offers a number of winterizing tips.
For growers considering direct-cut harvesting canola, there are many factors that play a role. Researchers in Saskatchewan are trying to provide growers with more information in a three-year project comparing the effectiveness of three different direct-cut header types (draper, rigid auger, and extended knife auger [Varifeed]) with windrowing treatments, focusing on header loss and performance.Initiated in 2014, preliminary results from the first two years of the project are showing similar trends, which researchers expect to be able to confirm at the end of the 2016 crop season. An economic analysis of the three-year project will also provide additional information to support decision-making.  The project includes three study locations – Indian Head, Swift Current and Humboldt – and uses the same protocols and headers at each location. Researchers have been able to refine their testing methods in the first two years, which will strengthen the information collected at the end of the project. The project also compared two types of canola varieties, a standard hybrid variety (InVigor L130) and two shatter resistant varieties (InVigor L140P and Dekalb 75-65 RR). Factors such as yield, header loss and loss location, environmental shatter loss and various quality components are measured.“The results from the first two years of the project are showing very similar trends,” explains Nathan Gregg, project manager with the Prairie Agricultural Machinery Institute (PAMI). “Although all of the headers performed well, the Varifeed with the extendable cutter bar does show some marginal gains in loss retention. It seems to be able to retain more of the shatter loss that occurs with all of the headers.” Gregg adds that from the observations so far the extendable cutter bar allows it to go further forward, which in theory helps to retain losses from the reel. It also provides for smoother crop flow sideways to the centre of the header and then into the feeder house. This smoother crop flow means less violence and less shattering occurring in the conveyance process.“The Varifeed was also a bit more operator friendly and is a little easier to run. The extendable cutter bar is a bit more forgiving and can just go ahead/back to match the crop canopy conditions with the push of a button in the cab. Although the Varifeed provides some advantages, it doesn’t mean the other headers don’t work well. The draper does a good job, but it does take more attention to detail as far as reel position and reel speed to match to the crop canopy. However, the draper header with its ground-following floatation system performed a bit better under lodged crop conditions.” A key objective of the project is to try and identify the source and location of the header losses. In 2016, researchers increased the number of sample pans, which are placed in the crop across the width of the header and into the zone just beyond the header into the adjacent crop. “So far, the preliminary results show the higher proportion of losses are at the perimeter of the header, with another spike of losses at the centre of the feeder house,” says Gregg. “The pattern of losses is similar for all of the headers compared, although there are some differences in the degree of loss. These results are not surprising and are similar to research conducted elsewhere in Sweden and in other regions.” With the higher shatter losses concentrated at the perimeter of the header, researchers also wanted to compare losses of different dividers. Powered side cutters, including a vertical knife and a rotary knife were compared with regular passive end point dividers. Overall, the rotary knife had the highest losses of any configuration. The losses were not only higher but also higher for a wider zone (more than one foot at the point). The losses with the vertical knife were lower, with the regular passive divider showing some of the least loss. Researchers are not sure if the results are universal, but under the harvest conditions in the locations tested, the results from the divider losses were fairly consistent.   View the embedded image gallery online at: https://www.topcropmanager.com/index.php?option=com_k2&view=latest&layout=latest&Itemid=1#sigProGalleria5d908e4050  “One caveat to the findings is the question of why power dividers are being used in the first place,” explains Gregg. “Generally, power dividers are used on swathers for example to allow forward progress without the crop balling up and catching on the crop divider. However, in a straight cut situation, if conditions are right and crop material is drier, power dividers may not be necessary for forward movement. Overall, the passive divider provided a smooth sleek transition and the potential for lower losses in the conditions we have seen so far. Therefore, a tip for growers who are straight cutting and trying to use the header they have, it may be worth some time investment to install cardboard and duct tape, or whatever, to help make the transition at the divider point and around the edge of the header smoother.”The preliminary results of the variety trial comparisons were similar after the first two years of the project. Researchers will be able to provide better details after the 2016 growing season results are in and an economic analysis is completed. “In conventional hybrid canola, the standard control swath and combine treatment actually yielded the highest,” Gregg says. “The losses in the straight cut treatments were a bit higher and there were some additional losses to wind. However, the shatter resistant varieties performed well across all treatments, with the straight cut treatments yielding the highest. We need to complete the economics, however, the results so far indicate that investing in some sort of shatter resistant canola variety would be a very good consideration for growers who are planning to straight cut.” “Although header choice plays a role in minimizing losses, other management decisions, choice of variety and harvest timing may hold more potential to impact yield than specific equipment,” adds Gregg. “As the practice of straight cutting canola gains traction, some growers will move to a specific header for the task, but in the meantime we are not seeing anything that suggests they need to rush out and do that immediately. There are several factors that come together at harvest and we are trying to look at some of those. We have another project underway looking at crop maturity and harvest timing and the potential of using desiccation for straight cutting, and the impact these may have on combine performance (settings, fuel use, productivity, etc). When straight cutting, growers need to be patient and wait for the crop to be ready. In the future desiccation may be one of the tools that becomes more important.” The project is jointly funded by SaskCanola, Saskatchewan Ministry of Agriculture and the Canada-Saskatchewan Growing Forward II Bilateral Agreement and the Western Grains Research Foundation.
Variable rate (VR) technology has been around long enough that VR fertilizer application is common. But what about VR seeding rates? Like VR fertilizer, VR seeding seeks to smooth out field variability so crop establishment is more uniform.
Are AgBots the way of the future for agriculture in Canada, or simply the latest in a long line of products marketed as must-haves for Canadian producers?Long used in the dairy industry for autonomous milking and herding, robotics technology is being applied in soil testing, data collection, fertilizer and pesticide application and many other areas of crop production.“Robotics and automation can play a significant role in society meeting 2050 agricultural production needs,” argues the Institute of Electrical and Electronics Engineers’ Robotics and Automation Society on its website.  Farmers have a right to question the value of new technologies promising greater efficiency on the farm. But Paul Rocco, president of Ottawa-based Provectus Robotics Solutions, believes robotics offer a suite of potential new solutions for producers short on resources and averse to risk.“In a perfect world, farmers would have a machine that could perform soil sampling at night, deliver a report in the morning, and be sent out the following night to autonomously spray,” says Rocco. “We’re a ways away from that, but the technology is maturing and the capabilities exist already – it’s about putting it into the hands of farmers and making sure it’s affordable.”Provectus’ latest project involved problem solving for a banana plantation in Martinique, where human ATV operators are at risk of injury from chemical spray or even death due to unsafe driving conditions. The company recently developed a remotely operated ground vehicle that carries spray equipment and can be controlled by operators in a safe location.“We see applications in Canada,” says Rocco. “Why expose people to hazardous substances and conditions when you can have an unmanned system?”Robotics are not all bananas. For example, a Minneapolis-based company, Rowbot Systems, has developed an unmanned, self-driving, multi-use platform that can travel between corn rows – hence, “Rowbots” – to deliver fertilizer, seed cover crops, and collect data.RowBots are not yet commercially available, but CEO Kent Cavender-Bares says there’s already been interest from corn growers across the United States as well as Canada. As to whether the use of robotics is cost-effective for farmers, it’s almost too soon to say. But utility can be balanced against cost.“In terms of cost effectiveness from the farmer’s perspective, there’s a strong story already for driving yields higher while reducing production costs per bushel. Of course, we need to bring down the cost on our side to deliver services while making a profit,” says Cavender-Bares.He believes that as autonomy spreads within agriculture, there will be a trend toward smaller, robotic machines. “Not only will smaller machines be safer, but they’ll also compact soil less and enable more precision and greater diversity of crops,” he says.Case study: ‘BinBots’Closer to home, a group of University of Saskatchewan engineering students has designed a “BinBot,” an autonomous sensor built to crawl through grain bins and deliver moisture and temperature readings.The students were part of a 2015 Capstone 495 design course, in which groups of four students are matched with industry sponsors to tackle specific problems.Joy Agnew, a project manager with the Prairie Agricultural Machinery Institute (PAMI)’s Agricultural Research Services, stepped forward with a challenge: could students develop an improved grain bin sensor for PAMI?“It came about from the first summer storage of canola project we did, and the data showing that in the grain at the top of the bin, the temperature stayed steady during the entire sampling period, but the temperature in the headspace grain was fluctuating wildly,” says Agnew. “We realized the power of grain insulating capacity – there was less than 15 centimetres between the grain that was changing and the grain that wasn’t. That made us think: the sensors are really only telling you the conditions in a one-foot radius around the sensor – less than one per cent of all the grain in the bin.”The problem she set to the students: can you design sensors with “higher resolution” sensing capabilities than currently available cables?“We were looking at some high-tech ideas of how we could do that with radio waves or imaging, and we thought we needed more mechanical systems,” says Luke McCreary, who has since graduated. “We ended up with a track system in the bin roof with a robot on a cable. The robot has a couple of augers on it so it can propel itself through the grain, taking temperature and humidity measurements as it goes and sending that data to a logging source to create a 3D map of the temperature, humidity and moisture in the bin,” he says.Once built, the robot will be six inches in diameter and 14 inches long, with the ability to move laterally, vertically and transversally.Agnew says PAMI is applying for funding to build the robot, and has already had some interest from manufacturers. She says the technology could reach farmers’ bins between five and 10 years from now.“We think this is the way of the future to avoid the risk of spoilage,” she says. “The technology is advancing, and costs are declining rapidly.”
Sept. 9, 2016 - Augers and the dangers associated with grain are well-known hazards during harvest. Protocol for safely working around these elements should be outlined and communicated with co-workers to minimize or eliminate the risk of injuries. When using an auger, one person should be designated as being in charge of the task, and be sure that the equipment is periodically inspected during operation. While the auger is running: Observe work area restrictions Keep all safety shields and devices in place Make certain everyone is clear before operating or moving the machine Keep hands, feet, hair and clothing away from moving parts Shut off and lock out power to adjust, service, or clean the equipment “Grain handling entrapments can happen very quickly,” says Nicole Hornett, farm safety coordinator, Alberta Agriculture and Forestry. “Flowing grain can draw a person down within seconds. High capacity equipment, such as wagons paired with large diameter augers, can be extremely efficient at unloading grain. Flowing grain can pull children and adults down quicker than one thinks they can react.” The best way to reduce the risk of grain entrapment is to eliminate the situation. Farm workers, however, are exposed to some risks. To reduce risk, follow these guidelines: Consider all alternate methods to free up grain before resorting to entering a wagon or bin. Bin entry should be the last resort. Lock out power to all types of grain handling equipment - disconnect power and place locks over operating switches Always use the buddy system when you are unloading or loading grain - quickly stopping an auger could mean the difference between an entrapment or a fatal engulfment Never enter a bin when grain is caked or spoiled - mouldy, wet grain clumps and, as it is unloaded, a large air pocket can form just below the surface creating a ‘grain bridge’ that can collapse at any time “Make this year’s harvest season one where everyone gets home safe and healthy at the end of each work day,” says Hornett. “Whether it is shift work with an extended team of farm hands or a few family members, make the plan work for safety. With all the potential hazards during fall work, it takes some discussion and planning to ensure everyone is on the same path to a safe and bountiful harvest.”
Sept. 6, 2016 - The Government of Canada has announced an investment of $1,825,000 to Clean Seed Agricultural Technologies Ltd. to support the commercialization, production and distribution of a new, high-precision seeder. With this funding from the AgriInnovation Program (part of the Growing Forward 2 agricultural policy framework), six seeders will be produced and field tested on farms, in addition to upgrades of the production line."This technology represents a new step forward in precision, no-till farming that will help farmers maximize their production and profits, while reducing their environmental footprint," says Terry Beech, parliamentary secretary to the minister of science.Precision seeding equipment uses sophisticated field/soil mapping technology which enables the farmer to apply precise amounts of seed, fertilizer and nutrients, at the right time, to maximize yields and reduce cost.
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Today many biofuel refineries operate for only seven months each year, turning freshly harvested crops into ethanol and biodiesel. When supplies run out, biorefineries shut down for the other five months. However, according to recent research, dual-purpose biofuel crops could produce both ethanol and biodiesel for nine months of the year – increasing profits by as much as 30 per cent. “Currently, sugarcane and sweet sorghum produce sugar that may be converted to ethanol,” said co-lead author Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “Our goal is to alter the plants' metabolism so that it converts this sugar in the stem to oil – raising the levels in current cultivars from 0.05 per cent oil, not enough to convert to biodiesel, to the theoretical maximum of 20 per cent oil. With 20 per cent oil, the plant's sugar stores used for ethanol production would be replaced with more valuable and energy dense oil used to produce biodiesel or jet fuel.” A paper published in Industrial Biotechnology simulated the profitability of Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) with 0 per cent, 5 per cent, 10 per cent, and 20 per cent oil. They found that growing sorghum in addition to sugarcane could keep biorefineries running for an additional two months, increasing production and revenue by 20-30 per cent. | READ MORE
The president of a new farm co-op says it's working to sign up 200 to 300 members to supply corn stalks and leaves, also known as stover, as well as wheat stalks, to a proposed new plant in Sarnia, Ont., that will turn the biomass into sugar. The Sarnia Observer reports. | READ MORE
The equipment used to maintan Ontario's Bruce Trail (which runs from Niagara to Tobermory) leaves a significant environmental footprint. Enter Canada’s soybean farmers and renewable, green lubricant products made from plant-based oils. | READ MORE
Nobody is more familiar with the fight against weed pressure than organic farmers, but one weed control strategy that works in organic settings might be just as beneficial for conventional growers, according to a Laval University researcher. The secret is mulch. Caroline Halde, a professor in the department of plant science at Laval University in Quebec, says cover cropping for weed control is a proven strategy in organic studies. But she’s also had plenty of interest from conventional no-till growers in the use of cover cropping. “I’ve had no-till farmers come to me who are working with cover crops more and more, and now they are ‘almost organic’ because they use very little inputs in their cropping systems,” she says. “And now they want to make the switch because they’re almost organic but don’t get the premium.” But mulch-based weed control takes cover cropping one step further. In year one, a cover crop is planted as green manure. In year two, a cash crop is planted directly into the mulch, with the mulch serving as the grower’s only form of weed control. Halde, working under the supervision of Martin Entz, a professor of plant sciences at the University of Manitoba, completed a study investigating the use of mulches in an organic high-residue reduced tillage system near Carman, Man., in 2013. In the study, barley, hairy vetch, oilseed radish, sunflower and pea were used as cover crops, then planted with wheat. The best cover crop for weed control and cash crop yield was hairy vetch or a barley-hairy vetch mixture. “Green manure mulches with hairy vetch were effective at reducing weed biomass by 50 per cent to 90 per cent in the no-till spring wheat in 2011 and 2012, compared to other mulches,” Halde concluded. The method is not a magic bullet. Halde says high cover crop biomass is key to achieving good mulch that will effectively choke out weeds the following year. “First, you have to have a good establishment of your cover crop – that’s rule number one,” she says. Poor or excessively wet weather in the spring might hamper cover crop growth. “And another thing is to choose fields that have low weed seed banks, or at least for some particular weeds, particularly wild oats.” In Halde’s study, wild oats and perennial weeds, such as dandelion and Canada thistle, made for challenging conditions. Halde’s study relied on removing a field from production for one full year each cycle, but she says the payoffs can be rewarding. In Western Canada, the benefits of such a system involve water conservation as well as weed control. In Eastern Canada, removing herbicides from a field for a year would also be a major boon for growers nervous about herbicide resistance. “That would be a great advantage, because we see more and more herbicide-resistant weeds in Eastern Canada,” she says. But Halde is currently seeking funding for a study in Eastern Canada on the use of fall cover crops used as mulch in the spring and planted with short-season cash crops – a system which would keep fields in production, so growers do not have to lose a year each cycle. Biomass is keyCarolyn Marshall, a PhD student at Dalhousie University, is currently studying the impacts of no-till green manure management on soil health in organic grain rotations on two sites – at Carman, Man., under the supervision of Martin Entz, and at the Dalhousie Agricultural Campus in Truro, N.S., under the supervision of Derek Lynch. The project, which is funded by the Organic Science Cluster through Agriculture and Agri-Food Canada (AAFC), began in 2013 and will conclude this year. She says cover cropping shows enormous promise for weed control in both organic and conventional systems. “I would love to see more use of cover crops in all systems. I think they can solve all kinds of problems,” she says. Marshall’s project is focused on determining how green manure termination method affects soil health in organic grain rotations, with three tillage intensities applied on all plots: no-till, minimum tillage and spring and fall tillage. At Carman, Marshall’s team is employing a four-year rotation of hairy vetch-wheat-fall rye-soybean plus a red clover-red clover-wheat-soybean rotation. At Truro, the experiment is testing two green manures – pea/oat, and hairy vetch/barley, each followed by a wheat-fall rye-soybean rotation. In the first round at Truro, Marshall says, “We had really good growth of the green manure. Some plots got up to 10 tonnes per hectare of biomass, and it was really effective at stamping out the weeds.” When the experiment was repeated in 2014, a dry spring resulted in limited growth and very thin mulch. “The weeds went berserk in the no-till plots,” Marshall says. “Weed control seems to really depend on getting enough biomass to get a thick enough mulch, and that really depends on the weather.” Termination methods matter, too: when mulches were mowed in the fall at Truro, they decomposed, leaving too little mulch on the soil surface in the spring. When a roller crimper was used instead, the cover crops continued to grow until winterkilled, resulting in heavy mulch cover in the spring. “Researchers in North Dakota, Georgia and New England are also finding that if you don’t get enough biomass to suppress the weeds, they’ll take over your cash crop and cause a lot of problems in a very short time,” she says. It’s early days for this research, but both Halde and Marshall are enthusiastic about the potential for mulch-based weed control in organic and conventional systems alike. “In conventional systems you can use different crops to get more consistent mulch levels, which has a lot of potential to help with long-term control,” says Marshall.        
December 1, 2015 - Once considered a weed, camelina is gaining popularity in some parts of the country as a soil-protecting winter cover crop. Additionally, its seed contains high-quality oil for use in cooking and as biodiesel, offering a renewable alternative to imported petroleum. U.S. Department of Agriculture (USDA) scientists have been on the forefront of studies to make camelina and other novel oilseed crops more profitable for farmers to grow, easier for industry to process, and better performing as finished biofuels and other products. At the Soil Management Research Unit, operated in Morris, Minnesota, by USDA's Agricultural Research Service (ARS), scientists are evaluating the outcome of integrating camelina, canola, pennycress and other oilseeds with plantings of traditional Midwestern crops, such as corn and soybeans. In a recent study published in the April issue of Agronomy Journal, ARS scientists Russ Gesch and Jane Johnson examined the seasonal water use of double cropping and relay cropping-strategies that overlap the growth of winter camelina and soybean. Highlights of their findings are: Under natural rainfall conditions, relay cropping (in which the soybean crop is seeded between rows of growing camelina plants) used less water than double cropping (in which soybean seed is sown right after a camelina harvest, around mid to late June) and produced higher soybean yields.   Relay-cropped soybean yields were lower than those of full-season soybean crops; however, the total oil yield from the relay system (camelina plus soy) was 50 percent greater than the full-season soybean-only crop.   Net economic returns of relay cropping were competitive with those of full-season soybean, while adding the benefits of a cover crop. According to the researchers, the study demonstrates a sustainable way to grow crops for both food and fuel on the same parcel of land, which could potentially offer farmers a dual source of income in a single season. Read more about this research in the November issue of AgResearch.
Oct. 13, 2015, Hamilton, Ont. – G3 Canada Limited will construct a new lake terminal at the Port of Hamilton to originate grains and oilseeds out of Southern Ontario for export to global markets. The 50,000-metric tonne facility will be located at Pier 26 in the Port of Hamilton, just off Queen Elizabeth Way. Grains and oilseeds will be loaded on to vessels for transport to G3's facilities on the St. Lawrence River. From there, they will be shipped onwards to export markets around the world. Construction on the facility is already underway and is slated for completion prior to the 2017 harvest.
September 22, 2015 - A new vegetable oil-based multi-purpose lubricant for sale in Canada is about to become a bit more local.
Sept. 16, 2015 - Alberta Innovates Bio Solutions (AI Bio) has launched a new funding program - Alberta Bio Future, Research and Innovation - aimed at advancing knowledge that accelerates growth of new bioindustrial products or bioindustrial technologies for the benefit of Albertans. Discovery and developmental research are strategic priorities of Alberta Bio Future (ABF) – AI Bio's flagship bioindustrial program. Bioindustrial products from Alberta – derived from sustainable agricultural or forest biomass – are already being used in several sectors, including the personal care, chemical and energy industries, as well as construction and manufacturing. These bioproducts are helping to meet the world's growing demand for 'green' solutions; they have desirable qualities for the manufacture of goods and materials while also being environmentally friendly. "Alberta is a prime location for a thriving bioeconomy. We have abundant, renewable agriculture and forest resources, advanced infrastructure and highly qualified personnel," noted Steve Price, CEO of Alberta Innovates Bio Solutions. "But this is an emerging field into new areas of science. More investigation is required to increase basic knowledge, and to learn how to take concepts out of the lab and turn them into new industrial bioproducts and biotechnologies." The ABF Research and Innovation program has a total $4.5 million in available funding. Project funding amounts will be determined on a case-by-case basis, depending on the quality and scope of the project. In addition to funding, AI Bio assists researchers and companies with advice and connections. Researchers, companies or industry groups based in Alberta, and researchers conducting projects that benefit Alberta, are invited to apply by submitting a Letter of Intent. The deadline is Oct. 28, 2015 at 4 p.m. MT. Eligibility requirements and other important details are available here.  
Feb. 10, 2015 - The federal government is investing $3.7 million to help Integrated Grain Processors Cooperative (IGPC) Ethanol Inc. install a Fiber Separation Technology (FST) system to help boost production through operational efficiencies. According to a news release, the investment will enable IGPC Ethanol to have a higher output of ethanol, corn oil and distillers' grains, develop new higher value animal feed products and lower the plant's energy consumption. The introduction of FST at the IGPC plant allows for the early separation of fibre from corn prior to its fermentation, increasing the efficiency of the distillation process and producing a cleaner fibre product. The investment enables IGPC Ethanol to purchase approximately 18 million bushels (up from 16 million currently) of corn grain from local farmers for use as feedstock. Founded in 2002 by 780 farmers and agri-businesses, IGPC Ethanol is a division of IGPC Inc. and is one of Ontario's largest cooperatives. It employs 50 full-time staff at its plant in Aylmer, Ont. The plant began commercial operation in December 2008.    
Randy Duffy, research associate, University of Guelph’s Ridgetown Campus, sees potential for corn stover beyond bedding and feed.Photo by Janet Kanters. If green chemistry sounds more like an oxymoron than an opportunity, be prepared for some big surprises in the not-so-distant future.Innovators within the manufacturing industry are getting back to nature and the door is open for farmers to take part. While the production of biofuels remains a popular example of green chemistry, ethanol is only the tip of the iceberg when it comes to industrial products that are being designed to include more renewable resources. As governments start to wean ethanol companies off of subsidies, Murray McLaughlin, the executive director of the Bioindustrial Innovation Centre in Sarnia, Ont., says farmers can expect to see some positive changes.“Biofuels are important, but the challenge with biofuels is slim margins,” explains McLaughlin. “On the chemical side of things, as long as oil stays above $80 per barrel, we can be competitive with any of the companies in that space and don’t need subsidies.”In the petroleum industry, it’s not uncommon for companies to direct 75 per cent of raw materials into fuel production, but these often account for only 25 per cent of annual revenue. The rest of their income is generated by higher-end products, such as succinic acid, and it has made these products major targets for green chemists. Succinic acid is a specialty chemical used to make automotive parts, coffee cup lids, disposable cutlery, construction materials, spandex, shoe soles and cosmetics. It is usually made with petroleum, but BioAmber, a company that hopes to finish building North America’s largest bio-based chemical plant in Sarnia next year, has found a way to make succinic acid using agricultural feedstocks. By using agricultural feedstocks instead of petroleum in its process, BioAmber produces a product that is not only more environmentally friendly but also, critically, costs less than petroleum-based succinic acid. In some applications, it performs even better than its petroleum-based competitors. Babette Pettersen, BioAmber’s chief commercial officer, explains how the new technology is outperforming its traditional competitors.“Succinic acid offers the highest yield on sugar among all the bio-based chemicals being developed because 25 per cent of the carbon is coming from CO2, which is much cheaper than sugar,” says Pettersen. Assuming $80 per barrel of oil and $6 per bushel of corn, BioAmber’s product pencils out at more than 40 per cent cheaper than succinic acid made from petroleum. “Our process can compete with oil as low as $35 per barrel,” Pettersen adds. The increased efficiency of the company’s process reduces the need for raw product, for example, from two kilograms of sugar to make one kilogram of ethanol to less than one kilogram of sugar to produce one kilogram of succinic acid.The new plant is projected to purchase an annual quantity of liquid dextrose from local wet mills, which is equivalent to approximately three million bushels of corn. BioAmber’s yeast, the organism that produces bio-based succinic acid, can utilize sugar from a variety of agricultural feedstocks (including cellulosic sugars that may be produced from agricultural residuals such as corn stover when this alternative becomes commercially available).Randy Duffy, research associate at the University of Guelph’s Ridgetown Campus, co-authored a recent study on the potential for a commercial scale biorefinery in Sarnia, Ont. The idea of producing sugars from agricultural residuals is attractive to companies like BioAmber, which faces public pressure against converting a potential food source into an industrial product, but also to farmers looking to convert excess field trash into cash. “We’re at the point where some fields probably have too much corn stover and this is an opportunity for farmers if they want to get rid of their stover,” says Duffy. “Some farmers are using it for bedding and feed, but there’s a lot of potential corn stover out there not being used or demanded right now.”In fact, the report estimated that more than 500,000 dry tonnes of corn stover are available in the four-county region of Lambton, Huron, Middlesex and Chatham-Kent, and the refinery could convert half of it into cellulosic sugar annually, at a relative base price for corn stover paid to the producer of $37 to $184 per dry tonne, depending on sugar prices and sugar yields. McLaughlin says that with more and more companies look into building facilities like biorefineries, the potential benefits for farmers multiply exponentially. At the Bioindustrial Innovation Centre alone, McLaughlin says, there are three green chemistry companies already working in pilot demonstration scale operations to produce ethanol from wood waste, butanol from fermented wheat straw or corn stover, and plastic pellets with hemp, flax, wheat straw or wood fibres in them. On a full-scale basis, any one of these has significant potential to help farmers penetrate entirely new markets.Although these green products are exciting, McLaughlin strongly believes green chemistry is not going to completely replace oil and he tries to impress this on others. “There are such large volumes of these chemicals produced from oil, I don’t think we ever will get to the point where we can displace these chemicals,” he says, “but we can complement them.” He says Woodbridge’s BioFoam, a soy-based foam used in automobile interiors as seat cushions, head rests and sunshades, is an excellent example of a hybrid product that uses green technology and petroleum technology. In order for the green chemistry industry in Ontario to realize its maximum potential, he believes everyone involved needs to consider the oil industry as a potential ally rather than the enemy. “The petroleum industry already knows the chemical markets and they’ve got the distribution,” he says, “so, who better to partner with?”   What, exactly, makes some chemistry ‘greener’?Green chemistry is a relatively new concept, but rather than simply claim to be more environmentally friendly, the philosophy is defined by structured principles. Put simply, these technologies, processes, and services are required to prove safer, more energy efficient and environmentally sustainable. In 1998, Anastas and Warner defined the 12 principles of green chemistry.Prevention – Avoid creating waste rather than treating or cleaning it up after the fact.Atom economy – Synthetic methods must maximize the incorporation of all materials.Less hazardous chemical syntheses – Design synthetic methods that are least toxic to human health and the environment.Designing safer chemicals – Chemical products should be designed to be effective but with minimal toxicity.Safer solvents and auxiliaries – Avoid the unnecessary use of auxiliary substances and render harmless when used.Design for energy efficiency – Energy requirements of processes should be minimized for their environmental and economical impact. Use of renewable feedstocks – Raw materials should be renewable whenever technically and economically practical.Reduce derivatives – Use of blocking groups, protection/deprotection, temporary modification of physical/chemical processes, etc., requiring additional reagents should be minimized or avoided if possible.Catalysis – Catalytic reagents are superior to stoichiometric reagents.Design for degradation – Environmental persistence of chemical products should be minimal.Real-time analysis for pollution prevention – Real-time monitoring and control of hazardous substances must be developed.Inherently safer chemistry for accident prevention – Substances used in a chemical process should be chosen to minimize the potential for accidents.
Turning lower-grade canola into biodiesel presents some challenges, but Prairie researchers are finding innovative ways to overcome those challenges. They’re developing new approaches that are more efficient, produce better biodiesel and valuable byproducts, and help improve the economics of biodiesel production from damaged canola seeds. “In the short term, we’re working with others to generate a market for low-quality canola. So if a grower has a bin that overheats or a canola field that gets caught under a snow bank, we can at least redeem some value for that material for them by having an industry that is receptive to frost-damaged, heated and field-damaged materials,” explains Dr. Martin Reaney, research chair of Lipid Quality and Utilization at the University of Saskatchewan. “In the longer run, we are identifying added value in the crop. In my experience, when somebody discovers an added value opportunity, it doesn’t typically result in a much higher price. But it does tend to stabilize the price. We’re introducing technology that may lead to a more stable price by adding another market to the meal and oil markets for the canola crop.” Reaney has been investigating opportunities for using damaged canola seed for many years, including research when he was at Agriculture and Agri-Food Canada and now at the University of Saskatchewan. He and his research team have tackled the topic from a number of angles. “When we first went into making canola into biofuels, [Canada] didn’t have the subsidies that were available in the United States and Europe. So we needed to take advantage of low-cost materials. For that purpose, we looked at seed that had been damaged either in the field or in storage,” he says. “First we studied how to get the oil out of the seed. A lot of damaged seed has lost its structure, and it is not efficiently pressed to recover oil. So we developed more efficient pressing and extraction technology.” Another early issue was that sources of damaged canola seed tend to be scattered all over the place, with amounts varying from year to year and place to place. Reaney says, “So we came up with the hub-and-spoke approach, to collect and bring the seed to some common locations for processing.” The researchers also improved the process of converting the oil into biodiesel. “Damaged seed produces quite low-quality oil with lots of different problems. So we had to figure out a very robust way of making biodiesel so that, no matter what, the biofuel would have good quality,” notes Reaney.Although canola biodiesel has advantages over biodiesel made from products like tallow and soybean oil, its properties are still somewhat different from petroleum-based diesel. So Reaney’s research group has developed processing technologies to improve such canola biodiesel properties as oxidative stability and low-temperature performance. He notes, “Low-temperature performance hasn’t turned out to be a big problem with canola mainly because when you blend it with other diesel fuel, like with a Canadian winter diesel fuel, it takes on the performance of that fuel.” One of the overarching themes of Reaney’s research is to develop techniques that are practical on the Prairies. “A lot of researchers will grab the latest technology, a ‘super-’ this or ‘ultra-’ that, and the equipment is very expensive. In my experience, western Canadian biofuel producers usually can’t use that kind of technology,” he explains. “So we look for the best biofuel properties – we can’t ever compromise on the properties of the material – that can be produced with rather conventional, simple, low-cost equipment.” Along with using damaged seed to reduce input costs, the researchers have been exploring other ways to improve the economics of biodiesel production. “[For example,] the catalyst for making biodiesel is actually quite expensive. We came up with a technology to lower the cost of that catalyst to about one-third of its original cost,” he says. They are also developing a novel approach that turns a biodiesel processing waste into a valuable byproduct. “We developed a special lithium-based catalyst for biodiesel production, and we’ve developed a method of converting the leftover catalyst into lithium grease [a heavy-duty, long-lasting grease],” says Reaney. “Lithium grease is broadly used all over the world – in heavy equipment, trains, planes, automobiles.” They are now scaling up the process for use at a commercial scale. Another current project involves making biofuels that are “drop-in” fuels. “Right now, biodiesel still has to be handled somewhat differently than [petroleum-based] diesel,” he explains. “But there are approaches to make it into a drop-in fuel. A drop-in fuel means it would have exactly the properties of diesel. You would be able to use it as is and it would require no special handling.” As well, the researchers are exploring motor oil technology that uses vegetable oils. “We have been working on trying to get the stability of these oils high enough for use in motor oil applications. We think we have some really good technology for this goal as well.”Reaney’s research on industrial uses for lower-grade canola has been supported by many agencies over the years such as Saskatchewan’s Agriculture Development Fund, Agriculture and Agri-Food Canada, and the Natural Sciences and Engineering Research Council of Canada. His research also has received support from such agencies as GreenCentre Canada and from such companies as Milligan Biofuels Inc. (formerly Milligan Biotech).Opportunities and challengesThe Canadian biodiesel industry has encountered a number of hurdles and has not grown as quickly as some people had hoped it would. For instance, the industry is still working towards meeting the increased demand arising from the Canadian government’s requirement for a minimum of two per cent renewable fuel content in diesel fuel. This requirement came into effect in 2011. According to Reaney, one of several issues hampering the Canadian biofuel industry has been the contentious food-versus-fuel debate, about the issue of using farmland to produce biofuel feedstocks. Reaney’s group was ahead of the curve on this issue by focusing on the use of non-food grade canola to make biodiesel. But beyond that, his opinion is that food production and fuel production are not mutually exclusive. “It isn’t food versus fuel; it is food and fuel,” he says. “All these biofuel industries actually produce more food than would have been produced had they not entered the biofuel industry, because they are always producing a side stream that is edible. So I think that issue has been addressed by the biofuels industry, but I don’t know whether the public has caught up.”Milligan Biofuels, based at Foam Lake, Sask., is one of the companies managing to weather the ups and downs of the Canadian biodiesel industry. Along with making its own improvements to biodiesel production processes, the company has adopted some of the advances made by Reaney’s research group.“Their research proved the ability to produce consistent biodiesel from damaged seed, and that’s our business model,” says Len Anderson, director of sales and marketing for Milligan Biofuels. The company manufactures and sells biodiesel and biodiesel byproducts, and provides canola meal and feed oil to the animal feed sector. All of its products are made from non-food grade canola, including green, wet, heated or spring-threshed canola. “Milligan Biofuels is built in and by the ag community for the ag community,” notes Anderson. “That’s why it is where it’s at and why it’s doing what it’s doing.” He outlines how this type of market for damaged canola helps growers. “It’s giving them an opportunity for a local, reliable, year-round market. It creates a significant value for damaged canola because we aren’t just using it for cattle feed; we’re using the oil to produce biodiesel. So we’re probably on the higher end as far as value created for damaged seed. It creates value for what was once almost a waste product, is what it boils down to.”

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace