Controlled drainage can increase yields

Controlled drainage can increase yields

Most eastern Canadian producers have considered whether tile drainage is right for their operations.

Breeding and management of Fusarium head blight

Breeding and management of Fusarium head blight

Breeders in Western Canada have a lot of challenges with FHB

Aphanomyces and Fusarium root rots of pulse crops

Aphanomyces and Fusarium root rots of pulse crops

Root rots are caused by a complex of pathogens.

In parts of northeastern Saskatchewan, excess moisture and high water tables have prevented some growers from seeding certain fields in the Melfort area over the past few years. Water table levels have been monitored in the area since an observation well was installed in 1967, with the highest levels ever recorded in 2014. Water levels declined consistently from the mid-1970s until 2004, when they began to rise significantly through 2014. With the high cost of cropland, growers can't afford to not crop all of their acres.“In 2014, a local area grower with land adjacent to the Melfort Research Farm contacted us to look into the potential of tile drainage,” explains Stewart Brandt, research manager with the Northeast Agriculture Research Foundation (NARF). “This 40-acre parcel, affected by excess water and salinity, had the Melfort Creek running through the quarter section. With grower investment and some additional funding (supported by the Agricultural Demonstration of Practices and Technologies [ADOPT] initiative under the Canada-Saskatchewan Growing Forward 2 bi-lateral agreement), we initiated a three-year project in the fall of 2014.”As the first step before undertaking a tile drainage project, the landowner must contact the Saskatchewan Water Security Agency for approval. One of the most important factors is having a plan of where the water discharge from the tile drainage will be released, and to confirm that there is a viable outlet or point of adequate discharge, which means the amount of water being contributed from the tile drainage is insignificant compared with the amount of water flowing in the creek. For this project, the Melfort Creek provided the point of adequate discharge.“Tile drainage is a long-term investment and requires careful planning and consideration,” Brandt says. “Getting professional design and installation support is recommended and for this project we worked with Northern Plains Drainage Systems Ltd. from Manitoba, who provided the design, engineering and installation. In late October 2014, we held a half-day workshop followed by a half day in the field learning about tile drainage installation.”The costs for tile drainage vary depending on soil texture, design and installation requirements. On coarse textured soils, the tiles can be placed quite far apart, reducing costs, but in clay soils, the tiles need to be placed closer together at about 40 feet apart, which requires a lot more tile drainage material. For large areas or entire fields, usually the most efficient and cost-effective design is a parallel installation. In some situations, a targeted design can be installed for smaller problem areas where other parts of the field do not require drainage.One of the most important components of the installation is developing the initial field elevation map. “Recent advancements in GPS technology have reduced the costs of generating an elevation map substantially,” Brandt says. “Instead of having to have a survey crew out to develop the elevation map, good elevation maps are easily generated with GPS technology, which also improves the efficiency and accuracy at installation. The major cost of the project is actually for the amount of tile drainage materials required and the installation. Typically the materials have had to be imported from the U.S., but more recently, a Canadian supplier is offering the materials.”Regular monitoring of the tile drainage installation is part of the project and began as soon as the installation was completed in the fall of 2014. The water began to flow as soon as the tiles were installed and continued until freeze-up. It then started again in the spring of 2015. Except for a brief dry spell at the end of June 2015, the tile drain continued to run through the year. A large rainfall event at the end of July 2015 was successfully drained off the field and also reduced some of the salinity impacts at the same time. The rainwater flushed the salts down and out of the drain rather than allowing the salts to be pushed up through capillary action in the soil with excess water. “We monitored electrical conductivity [ECe] levels on the water coming out of the tiles in the fall of 2014, as well as the water in the creek. The initial ECe was 8,000 at the outlet and 9,000 in the creek, meaning the creek was more saline than the tile drains, which was a bit surprising. However, most of the creek flow in the fall is due to subsoil seep into the creek.”In 2015, half of the field was seeded to canola and the other half, which was badly affected by salinity, was left in the permanent forage stand. Although there isn't previous yield map data for comparison, the canola yields in 2015 appeared to show a good response to the tile drainage. The grower was pleased with the results and removed the remaining permanent forage in the fall of 2015. The entire 40 acres was seeded to barley in the spring of 2016.“By the end of June 2016, a fairly decent barley crop had been established and the productivity appears to be very good,” Brandt says. “We also have a reference area with two previous years of yield data outside the tile drained project that is badly affected by both salinity and excess moisture for comparison. The grower is very pleased with the results so far and is considering tile drainage installation on another 2,000 acres of cropland as time and investment allow.”Similar to previous findings in Manitoba, this project is showing several benefits to tile drainage, although some are difficult to quantify in terms of economics. “Removing the excess water not only improves the water use by the crop but it also creates temporary storage for water from rains and spring runoff in the field,” Brandt explains. “It doesn't decrease the total amount of water going into the stream, but it delays peak stream flow after a rain. Other benefits include more timely field operations, earlier start to seeding, less crop drowning out, less compaction and better access, timing and utilization of fertilizers and pesticides. All of these factors have a big impact in particular in areas like northeastern Saskatchewan where we tend to have a very narrow window for seeding and harvest and timeliness of operations is critical.”Brandt has received a lot of calls about this project and believes it has probably generated the most interest he has ever had on a project. There is lots of interest in tile drainage projects in the area and all along the east side of the province. Planning ahead, getting necessary approvals and being able to plan for installation after harvest if conditions allow are the key.Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
Just like you inoculate legume seeds with a rhizobial inoculant, one day you might inoculate canola seeds with a plant-growth-promoting fungus. Greenhouse experiments in Alberta are showing that a fungus called Piriformospora indica can boost canola performance, providing benefits like increased yields, reduced fertilizer needs, and increased tolerance to cold and drought. Now the research team is testing this promising inoculant in the field.“Piriformospora indica was discovered relatively recently in northwest India, and since then has been found in other parts of the world,” notes Janusz Zwiazek, a professor of plant physiology at the University of Alberta, who is leading the research. Since Piriformospora indica’s discovery about two decades ago, researchers have been learning more and more about this interesting fungus. Zwiazek expects it will likely be classified as a type of mycorrhizal fungi.He explains that Mycorrhizal fungi are a group of fungi that colonize plant roots, forming mutually beneficial relationships with their hosts. “Mycorrhizal fungi are very common. Probably more than 90 per cent of plant species are associated with mycorrhizal fungi in nature. Especially in soils that are poor in nutrients such as phosphorus and nitrogen, these fungi can mobilize these nutrients in the soil and make them available to plants. Mycorrhizal fungi can also protect plants against different environmental stresses such as drought, pathogens, and so on,” says Zwiazek.“But the exception is the family of Brassicaceae, the cabbage family of plants, to which canola belongs. Cabbage family plants typically don’t form mycorrhizal associations. So they don’t have the added benefit that many other plants receive from having these helpful fungi that can do so much good.”Luckily for canola growers, Piriformospora indica is a bit different from the average mycorrhizal fungus in a couple of ways.“Researchers have discovered that Piriformospora indica is capable of forming associations with the roots of a number of cabbage family species,” notes Zwiazek.Also, most mycorrhizal fungi have to be cultured in a plant host, but Piriformospora indica can be grown in a pure culture without a plant host, so it is easier to grow for commercial production of inoculants. And previous research has shown that Piriformospora indica has the ability to provide multiple benefits to host plant species, such as improving nutrient uptake, increasing stress tolerance, improving disease resistance, and enhancing plant performance.With all those things going for Piriformospora indica, Zwiazek was keen to see how it might work with canola.The first phase of the project was done in growth rooms where all the environmental conditions, such as temperature, light and moisture, were strictly controlled. The experiments were done under sterile conditions to exclude the possible effects of any other microbes.“We inoculated canola plants with a fungal culture of Piriformospora indica, and we studied the effects on plant growth under different environmental conditions, which we controlled in the growth rooms,” he says. Zwiazek’s team evaluated the effects of such things as temperature stress, low nitrogen and phosphorus levels, drought and flooding stress, and salinity stress on canola growth characteristics and yields, with and without the fungus.The biggest challenge in the project’s first phase was to develop a practical way to inoculate canola plants with the living fungus. Zwiazek explains, “In many cases, [commercial] mycorrhizal associations and mycorrhizal technology have failed because it is very difficult to inoculate the plants on a large scale, to maintain the inoculum alive long enough and develop the conditions which could be used on a commercial level and applied in practice.”After testing various Piriformospora indica inocula and procedures, the project team has developed an innovative inoculum and protocol that are practical for applying the fungus to seeds in commercial operations. They are currently applying for a patent for this technology.The project’s first phase is largely completed, and the results are very promising.“The most important findings are that the fungus can colonize canola plants quite easily and quite effectively, and it can be quite effective in increasing the growth and yield of canola, especially under lower phosphorus levels,” says Zwiazek. “Also, the fungus makes the plants more resistant to low soil temperatures and low air temperatures, and to drought stress conditions.”Now the next step is to see how well Piriformospora indica works under field conditions. So in 2016 the project team started testing the inoculant in field trials.In these trials, Zwiazek’s team will be looking at the effects of different soil amendments (including different soil organic matter and growth-promoting bacteria) on canola growth and yield, with and without the inoculant. As well, they are doing some tests in collaboration with Mary Ruth McDonald from the University of Guelph and Habibur Rahman from the University of Alberta to see how the fungus affects the canola plant’s ability to resist clubroot and possibly other canola pathogens.“The results of the greenhouse studies are very exciting. But everything has to be really tested in the field – this is the ultimate test. Hopefully in two or three years we’ll have a pretty good idea of how the fungus performs under field conditions, and how much farmers can actually benefit from it.”Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.Funders for this research include the Agriculture Funding Consortium (AFC), Alberta and Saskatchewan canola producer groups, Alberta Innovates – Bio Solutions, and Western Grains Research Foundation.
With the high risk of disease in very short crop rotations, many Prairie growers these days have questions about how to most effectively use fungicides and seed treatments. So Kelly Turkington, a plant pathologist with Agriculture and Agri-Food Canada (AAFC), is leading a project to help answer some of those questions for malting barley growers.The project is assessing the impact of seed treatments, plant growth regulators (PGRs) and/or fungicide timing on crop disease levels, grain yield, microbial populations on the grain, and malting quality.Turkington explains this project builds on past research and observations. One of his research interests is the role of seed treatments in cereal disease development. Back in the late 1990s, he did some preliminary work in the growth cabinet to see if seed treatments affected early-season leaf disease development. “We saw some activity of a product that is not registered any more in terms of protecting the second or third leaf of a seedling from barley scald.” Then in 2012, when Turkington was visiting some barley scald and stripe rust trials in Australia, he was intrigued to see that the plots with only a seed treatment had noticeably better leaf disease control than the untreated plots well into the growing season. So he wanted to explore that possibility under Canadian conditions.He adds, “We get lots of questions about early-season disease development in wheat and barley, especially in tight rotations like canola-wheat-canola-wheat, or canola-barley-canola-barley, or in continuous wheat or continuous barley, because the disease risk is high. So [in our current project] we wanted to look at strategies to try to address some of that early-season disease development.”Another longstanding area of interest for Turkington is the timing of fungicide applications. His previous research has shown herbicide timing is not a very good option for applying a fungicide because it won’t directly protect the upper canopy leaves, which are crucial for grain filling and yield. An application at the flag-leaf stage or at head emergence is much more effective. Now growers often ask whether it’s better to spray at flag-leaf or wait until head emergence.In his present project, Turkington wanted to determine if a seed treatment would provide enough leaf disease control to perhaps allow a grower to delay a fungicide application until head emergence. Also, he wanted to compare the effectiveness of a flag-leaf application alone, a head emergence application alone, and applications at both timings. He notes, “In more favourable and higher yielding environments, like New Zealand or perhaps the U.K. or Europe, often growers need to put on a fungicide at flag-leaf, or maybe slightly before that, and then again at head emergence to prolong the protection of that upper crop canopy and provide some suppression of Fusarium head blight.”Turkington included PGR treatments in the project for a couple of reasons. PGRs are used to shorten and stiffen plant stems as a way to reduce lodging, and could influence microbial growth. “If a crop is lodged extensively, the heads are down in the canopy, close to leaves that may be carrying the net blotch, scald or spot blotch pathogen. And they’re in a humid environment and may be more prone to have more extensive microbial growth on the developing head tissue and kernel tissue,” he explains. “One of the characteristics that maltsters and brewers look for in barley is a reduced risk of having a lot of microbial growth on the grain – they often refer to that as ‘microbial load.’ Microbial load can have implications in the malt house and the brew house.”Crop diseases, like this net blotch on an untreated check plot in the trial, may contribute to the microbial load on the grain. Photo courtesy of Kelly Turkington.Also, Turkington wondered if a reduction in plant height due to a PGR treatment might influence Fusarium head blight levels. He says, “In all the work that has been done on Fusarium head blight over about the last 25 to 50 years, one observation is that shorter statured varieties tend to have a bit more Fusarium head blight. So we wanted to see, if we address lodging via a PGR reducing the height, does that increase Fusarium head blight?”Turkington’s project (which started in 2013 and ends in 2018) is evaluating those four factors – seed treatment, PGR, flag-leaf stage fungicide application, and head emergence stage fungicide application – alone and in combination to see if there might be some synergies.The seed treatment used in the project is Insure (triticonazole, metalaxyl and pyraclostrobin), and the fungicides are Twinline (metconazole and pyraclostrobin) at flag-leaf, and Prosaro (tebuconozole and prothioconazole) at head emergence. The PGR is Ethrel (ethephon); it is currently registered for use on wheat, but not on barley.Turkington’s project team is collecting data on such factors as disease severity ratings, the level of lodging, grain yield, 1,000-kernel weight, bushel weight, plumps, thins, and so on. As well, harvested grain samples from the plots are analyzed to determine the microbial load on the grain and the malting quality. Tom Graefenhan, a mycologist at the Canadian Grain Commission (CGC), is leading the microbial analysis, and Marta Izydorczyk, a barley scientist at the CGC, is leading the malting quality research.The project’s sites are at AAFC research locations across the Prairie region, including Beaverlodge, Lacombe and Lethbridge in Alberta; Scott, Indian Head and Melfort in Saskatchewan, and Brandon, Man. The project also has a site at the AAFC research centre at Charlottetown. All the sites are using AC Metcalfe – a well-known malting variety.As part of the quality evaluation for the project, the barley samples are malted in a micromalting system at the Canadian Grain Commission. Photo courtesy of Marta Izydorczyk.Preliminary resultsTurkington highlights some of the key results from the first three years of the agronomic component of the project.The impact of the seed treatment on disease levels in the upper canopy and on yield has been variable. “We have seen some positive aspects of seed treatment but not at all sites. Where we’ve had some benefit perhaps has been where we’ve had a higher level of disease development, which was especially Melfort in 2013 and to a certain extent in 2015,” he notes. “However, we didn’t see a synergism between using a seed treatment and using either a flag-leaf stage or a head emergence stage fungicide application.”It’s possible the variability in these results reflects the fact that the project wasn’t able to get the particular seed treatment product that was used in the 2012 Australian trials. Turkington is hoping to test that product in some of his future work.“The key factor in terms of controlling leaf disease development in the upper canopy was either a flag-leaf stage application or a head emergence stage application,” he says. “Looking at the data over the last three years, the head emergence application tended to be somewhat better, but it wasn’t necessarily always statistically better than the flag.” Reduced disease levels from a fungicide treatment resulted in higher grain yields.He adds, “We haven’t seen a huge benefit of applying fungicides at both the flag-leaf and the head emergence stages, although there were some hints of it at sites that had really high disease pressure.”For the most part, the PGR treatments had an impact only at sites with a significant risk of lodging. “The best example of that was 2013 at Melfort. They had a moderate level of lodging, and applying Ethrel significantly reduced lodging and that translated into better yields. In other years and other sites where the risk of lodging was lower or nonexistent, we really didn’t see a huge impact of using a PGR,” Turkington notes. Overall, the PGR applications did not have a strong impact on disease levels on the leaf tissue. The results for the microbial levels on the grain are still to come.Analyzing microbial loadsGraefenhan explains the microbes found on barley kernels reflect the microbes in the environment surrounding the barley field. They usually include a wide range of bacteria, yeasts and fungi, including some plant pathogens. He says most, if not all, microbes on the grain are killed during the malting process, especially in the kilning stage when the grain is heated to a high temperature. However, some substances produced by the microbes do remain on the malted grain and may get transferred to the next stages in the beer-making process. For example, some fungi, such as Fusarium, produce proteins that can cause gushing (when beer gushes out of a beer bottle).To analyze the microbial communities on the barley grain, Graefenhan’s lab first washes off all the microbes sitting on the surface of the seed. Then they extract the DNA of all of those microbes. Next, instead of sequencing the entire genome of each microbe, they look at a segment of the DNA that encompasses the “genetic barcode,” a short sequence of the DNA that identifies the species of the microbe.“These genetic barcodes are unique for each of the microorganism species we’re dealing with. The barcodes are very accurate and specific. We match them against a reference database that has [the most well-known] fungi, bacteria and yeasts,” Graefenhan says.“The method is very sensitive, so just because we detect a particular microorganism, that doesn’t necessarily mean it was vigorously growing on the plant. There are a lot of ubiquitous organisms out there in the environment, in the air, on the trees surrounding the fields, on the grasses, and they do spread out onto the grain as well,” he notes.“In our study, we take subsamples of 15 to 25 grams of seeds. On those 25 grams that we extract DNA from, we have hundreds of different microorganisms.”Along with identifying the different species, the DNA analysis also provides an indication of the species populations in the sample. “It gives us a good hint of how many of each of these organisms are there, whether there was just a single cell or a single population, or whether there was a diverse, growing population on the seed. By the number of DNA sequences from each of the species, we can tell whether it was a predominant species or just a single event.”Although most of the microbial results are too preliminary to make any general statements, it does appear that the geographic location of the sites is an important factor. Graefenhan explains, “Geographic location is always tightly linked to precipitation. For example, in the Red River Valley in Manitoba, precipitation is almost twice as much as in parts of Alberta. That is also reflected in the microbial composition and load on the grain. In general, we find more microbes in areas where the precipitation is higher, like the eastern Prairies in Manitoba and Eastern Canada.”The malting quality analysis is evaluating properties that are important for malting and brewing. Turkington expects to get a clearer picture of the microbial load and malting quality results over the next year as those analyses continue. The project’s agronomic fieldwork will be completed this year.Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.This project is funded through the Growing Forward 2 National Barley Cluster, with support from AAFC, Alberta Barley, Western Grains Research Foundation, Rahr Malting, and the Atlantic Grains Council. AAFC scientists and especially the technical staff at the field sites are helping with these trials.
Most eastern Canadian producers have considered whether tile drainage is right for their operations. According to Harold Rudy, executive officer of research and business development for the Ontario Soil and Crop Improvement Association (OSCIA), more than 50 per cent of the agricultural land in southern Ontario is tile drained. In many areas of the province, tile drainage facilitates timely field operations and helps decrease the risk of crop damage during heavy rainfall events.
Sulphur fertilizer’s form, such as elemental sulphur, gypsum or ammonium sulphate, affects its behaviour in the soil and its availability to the plant. The best form depends on the situation. Factors such as soil and crop type, weather conditions and timing all come into play. A Saskatchewan study has evaluated the effectiveness of different sulphur fertilizer forms under various conditions, providing useful information for crop growers.Jeff Schoenau, a soil scientist at the University of Saskatchewan, led the research. He has conducted various studies on sulphur fertilizers over the years, but this latest study delved into the transformations the different forms of sulphur fertilizer undergo in the soil and how those transformations affect crop uptake and yield.“We need to consider the behaviour of different forms of sulphur following application if we’re going to do a good job of predicting when that sulphur is going to become available to the plant and how it relates to such factors as leaching,” he explains.The study involved growth chamber and field trials in 2013 and 2014, as well as some additional work in 2015. Both types of trials compared five sulphur fertilizer forms applied in the seed row with canola, wheat and yellow pea, in Brown Chernozem, Black Chernozem and Gray Luvisol soils.The five different sulphur formsThe five sulphur forms were: ammonium sulphate (a soluble form of sulphur); potassium sulphate (soluble); gypsum (calcium sulphate, slightly soluble); ammonium thiosulphate (liquid); and elemental sulphur (insoluble). These fertilizers were applied at a rate of 20 kilograms of sulphur per hectare, alone and in combination with monoammonium phosphate fertilizer (MAP) at 20 kilograms of phosphorus pentoxide (P2O5) per hectare. The researchers evaluated the effects of these fertilizer treatments on the amount of plant-available sulphate and phosphate found in the seed row, on crop uptake of these nutrients, and on crop yield.The three field sites were located in Star City (Gray Luvisol), Melfort (Black Chernozem), and Central Butte (Brown Chernozem), Sask. The soils tended to be marginally deficient in sulphur. “We wanted the soils in the study to be typical Saskatchewan field soils, so the sites did have a history of sulphur fertilization in the rotation and therefore were not highly sulphur-deficient,” Schoenau says. “It’s difficult these days to find a field with soil that is highly sulphur-deficient because most growers now apply sulphur fertilizers regularly in their crop rotations, especially for canola.” Soils from these three sites were also used for the growth chamber experiments.The research team used several methods to track the changes in sulphur forms from the time of fertilizer application to crop uptake, focusing mainly on sulphate because it is the plant-available form. They collected soil samples from the seed row at one, four and eight weeks after seeding, and determined the amount of sulphate in the samples through chemical tests. They also evaluated the sulphate supply rates using probes in the soil. As well, they used advanced spectroscopy technology to determine which sulphur forms were present in selected soil samples. At harvest, they determined the amount of sulphur and phosphorus in the grain and straw, and measured grain yield and crop biomass.Using spectroscopies to determine absorptionFor the spectroscopy work, the researchers used x-ray absorption near-edge spectroscopy, or XANES, at the Canadian Light Source synchrotron in Saskatoon. Schoenau explains XANES provided further insight into what was happening to the different sulphur fertilizer forms; those details would have been very difficult to determine using conventional chemical methods. For example, the researchers used XANES to document the oxidation of elemental sulphur – its conversion into plant-available forms by microbes – and some other microbial transformations.“The ability to track the oxidation of sulphur fertilizers like elemental sulphur into more oxidized forms and eventually into plant-available sulphate over time is of particular interest, as new fertilizer products become available to growers in Western Canada,” Schoenau adds.Take-home messagesAvailabilityThe uptake data showed the availability of sulphur from elemental sulphur in the season of application was significantly lower than from the sulphate sources. “You need to have microbial activity and give the microorganisms the time to oxidize elemental sulphur into sulphate for it to be usable by the plant,” he explains.As a result, elemental sulphur can’t be relied on as a short-term source of available sulphur. He adds, “The role of the elemental sulphur product is to supply sulphur slowly over a number of years because the oxidation is incomplete in the season of application.”The soluble sulphates (ammonium sulphate and potassium sulphate) and thiosulphate proved to be very effective in supplying available sulphur to the crop early in the growing season. “That early supply of sulphate appears to be important for plant uptake of sulphur and crop yield,” Schoenau says.“The slightly soluble sulphur form, gypsum, is also an effective source of plant-available sulphur, producing a good crop response,” he adds. The study showed gypsum performs especially well in rainy conditions when there is a high risk for sulphate loss through leaching; gypsum tends to remain in the seed row while the soluble forms are leached away.“Sulphur fertilizers that supply sulphate and/or acidify the soil may slightly enhance the supply of plant-available phosphorus from phosphorus fertilizer placed in the seed row with the sulphur,” Schoenau says. However, the effects tend to be small.Crop responseWheat, canola and pea took up most of the sulphur fertilizer from the seed row in the first month after seeding and fertilizer application.“Canola is more responsive to sulphur fertilizer than wheat or peas, reflecting the lower demand of cereals and pulse crops for sulphur and also perhaps a better ability of those crops to scavenge sulphur from the soil,” Schoenau explains.“For sensitive crops like canola and yellow pea, ammonium thiosulfate and ammonium sulphate can cause injury when placed close to the seed. They are best placed separate from the seed.”Soil zone effectsSoil type plays a role in sulphur fertilizer needs. “Growers have built up a capacity in many soils to supply available sulphur through mineralization. This was especially apparent in the Black Chernozem soil where a high mineralization potential, or ability to release available sulphur from the soil organic matter, was evident,” Shoenau says. Crop response to sulphur fertilizer was less in the soils with high mineralization potential.“Sometimes in the drier Brown soils, we have a reserve of subsoil sulphate deeper in the profile, maybe at a 12- to 24-inch depth. That can come into play as a supply of available sulphur later in the season. So soils with that subsoil sulphate reserve sometimes aren’t highly responsive to sulphur fertilization, and only need starter sulphur to supply the crop until the roots access the deeper sulphate,” he says.“However, under very wet conditions, as we had in 2014 at our Brown soil study site, the crops were responsive to sulphur fertilizer, despite the subsoil sulphates. The unusually high amount of growing season precipitation pushed the sulphate down and really restricted the ability of the crops to access the subsoil sulphate.”Sulphur deficiency can be more common in Gray Luvisol soils than in Black or Brown soils because Gray soils tend to have a lower mineralization capacity and they don’t usually have subsoil sulphates.A soil test will give a good indication of the availability of sulphur in a field. “But keep in mind that there is typically a high degree of variability in sulphur availability across a field,” Schoenau says. “So you really have to pay attention to careful soil sampling, taking lots of cores and staying out of the atypical areas like slough edges where sulphate salts may accumulate, in order to best represent the field in your sample and avoid skewing.”Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.Schoenau collaborated on this research with Derek Peak from the University of Saskatchewan and S.S. Malhi from Agriculture and Agri-Food Canada. The Saskatchewan Canola Development Commission, Saskatchewan Pulse Growers, Saskatchewan’s Agriculture Development Fund, and Western Grains Research Foundation funded the study.
In 2013, two University of Guelph weed scientists began collaborating on alternatives to herbicides for weed control. The report, by Francois Tardif and Mike Cowbrough, was released in 2016.
Multiple modes of action make a big difference when it comes to slowing down the development of herbicide-resistant weed populations. That’s the message echoed throughout Nufarm Agriculture’s field plot tour, held outside Saskatoon on July 5.The tour featured cereal, canola, soybean and pulse plots to demonstrate Nufarm’s line of herbicides for pre-emergent control in cereals, canola, soybeans and pulses, and in-crop weed control in cereals. The overriding focus was on strategies to reduce the risk of weeds developing resistance to herbicide groups.“Using multiple modes of action across multiple application timings helps to manage the selection pressure placed on weed populations by each individual mode of action, and can reduce the proliferation of resistance mechanisms through a weed population,” says Nufarm’s Technical Services Manager Graham Collier in a press release. Agriculture and Agri-Food Canada research scientist Dr. Hugh Beckie updated attendees on the state of herbicide resistant weeds in Western Canada. Dr. Beckie, who worked on the very first case of herbicide resistance back in 1988, said the issue is growing in both complexity and severity. “In 2003 we were seeing 10 per cent of fields impacted, and as of last year we were seeing 57 per cent,” he said. Herbicide resistance hits farmers right in the pocket book, Dr. Beckie explained, citing a recent survey of 300 sites in Saskatchewan that found farmers reporting extra costs of $15-20 per acre to address herbicide resistance. Weed resistance is a growing challenge for all growers, but how likely resistance is to develop isn’t a mystery. Collier reviewed the key factors that impact herbicide resistance development. “Herbicide resistance can increase exponentially in a field, year by year, depending on the herbicide mode of action, the selection pressure applied to the population, the biology of the weed, and the number of times a specific mode of action is used,” says Collier. “For example, resistance will spread through a kochia population much faster than a wild oat population due to cross pollination, seed production and seed bank longevity. “Don't miss out on the 2018 Herbicide Resistance Summit! Register today for early-bird pricing.
Wheat is an important crop in Canada, representing nine per cent of total farm cash receipts in 2015, and averaging 16 per cent of crop receipts in Canada from 2011 to 2015, according to Statistics Canada. And Fusarium head blight caused by Fusarium graminearum is the most important wheat disease. Fusarium head blight also infects barley and is a problem in malt barley production. With increasing corn acreage in Manitoba, there is a greater incidence of ear rot caused by F. graminearum as well.The first and worst epidemic in Manitoba was in 1993. Since then, Fusarium has slowly spread to new areas across the Prairies, and by 2008, it was commonly found in the Dark Brown and Black soil zones in all three Prairie provinces.There has been an emergence of new Fusarium populations and shifts in existing populations since 2000. A possible cause is the accidental introduction of isolates from one area to another, or one country to another.Fusarium head blight is a concern because of the mycotoxins that can be produced by the pathogens. Fusarium graminearum produces two toxicologically relevant groups of mycotoxins. These mycotoxins have major impacts on swine feeding, resulting in poor feed intake and poor growth. Swine feed intake is reduced 7.5 per cent for every one part per million (ppm) of deoxynivalenol (DON) found in the diet.The first mycotoxin group is the Trichothercens, which includes DON and the acetylated derivatives such as 15-ADON and 3-ADON. The DON mycotoxin is very stable during storage, milling, processing and cooking and doesn’t degrade at high temperatures. The other mycotoxin group in the Trichothercens is Nivalenol (NIV) caused by F. cerealis. It is not a virulent but is 10 times more toxic than DON. This group could become a concern and we don’t have a good monitoring system for NIV.The second major mycotoxin group is Zearalenone and its derivatives.The current issues with Fusarium mycotoxins in the Canadian feed supply is that Fusarium pressure in Canada is widespread and may be increasing because of wet seasons that promote the disease. There is also the additional risk of mycotoxin exposure from new feed ingredients such as distiller’s dried grains with solubles (DDGS) that are corn or wheat based. There is an increased risk in livestock feed with DDGS, since DON concentrates in in DDGS by approximately three times.There appears to be a shift in the pathogen population with 3-ADON becoming more prevalent. This is a concern since 3-ADON makes significantly more toxin that is also more toxic. The LD50 for swine with 15-ADON is 113 milligrams per kilogram (mg/kg) while it is 49 mg/kg for 3-ADON. Analysis conducted by Ward et al in 2008 found that 3-ADON was found in six per cent of Alberta samples tested, 11 per cent of Saskatchewan samples, and 39 per cent of Manitoba samples.We have looked at genetic chemotyping of DON isolates. On winter wheat, we found 3-ADON accounted for 82.4 per cent of F. graminearum isolates in Winnipeg and 84.6 per cent in Carman, Man. At Melfort, Sask., 3-ADON accounted for 100 per cent of the DON population. Canadian Grain Commission samples of CWRS wheat in 2015 indicated a shift to 3-ADON in the Black and Dark Brown soils zones.This shift to a greater prevalence of 3-ADON brings new issues in managing the disease because of the increased virulence of 3-ADON. And because of the higher toxin production, there will be new issues at the elevator, in DDGS feeding and at the trade level because of potential downgrading.The accidental discovery of NIV producing isolates in winter wheat at Carman by Chami Amarasinghe at the University of Manitoba is also a concern. Five of 132 Fusarium isolates were found to be NIV. In these isolates, 65 per cent were identified as 3-ADON, 31 per cent 15-ADON, and four per cent NIV. The presence of NIV is a concern, since it is 10 times more toxic to livestock than DON.The identification of NIV is a concern because F. cerealis and F. graminearum are very similar and difficult to distinguish from each other. Until 2012, NIV had only been detected in a few barley samples in Canadian grain. However, testing for NIV in Canada is not routinely conducted at grain mills or elevators.Amarasinghe also investigated the possibility of masked mycotoxins in our grains. These mycotoxins are masked because their structure has been changed in the plant. This process occurs when plants detoxify DON by converting it to DON-3-Glucosides (D3G). Masked mycotoxins are also known as modified mycotoxins and can’t be detected by conventional chemical analysis. However the danger is that gut microbes in livestock digestive systems may be able to convert D3G back to DON.Findings from Amarasinghe’s research showed Canadian spring wheat cultivars produced D3G upon Fusarium infection, and there were significant differences among wheat cultivars. The susceptible cultivars showed a lower D3G to DON ratio (less D3G content) compared to the moderately resistant/intermediate cultivars. She found the level of resistance might have an effect on the production of D3G during the infection.Looking into the future, Canadian wheat production may be at greater risk of Fusarium infections. An increase of 3-ADON, the potential for NIV to establish, and masked mycotoxins in our grain may be food safety issues. Additionally, with climate change, there is a possible threat of an increase in mycotoxins or having new mycotoxins such as the new NX-2 population establish.Historically, in Canada we have seen shifts in the past. In the Great Lakes area, we saw a shift from ZEN to DON in the mid-70s, similar to the shift from 15-ADON to 3-ADON on the Prairies in the 2000s.There are now some wheat varieties that have resistance to Fusarium in winter wheat and Canadian Spring wheat. Other classes also have varieties that are moderately resistant to Fusarium as well. These are important and should be considered as management tools.This article is a summary of the presentation "War of the titans: The battle for supremacy in wheat-fusarium interactions," delivered by Dr. Dilantha Fernando, University of Manitoba, at the Field Crop Disease Summit, Feb. 21-22 in Saskatoon. Click here to download the full presentation.Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.Top Crop Manager's Hebricide Resistance Summit has been announced! Sign up today for early-bird pricing.
I work in Manitoba and we’ve been dealing with Fusarium head blight (FHB) for the last 25 years. In the 1990s, Manitoba started seeing severe infections. Those of you who are from Saskatchewan and Alberta, over the last two to three years, have definitely seen what it can be like when conditions are correct for Fusarium head blight infection.
In Ontario, soybean seedling diseases and root rots are the second most important yield limiting diseases, and this year is no different. Cool soil temperatures along with early rains in parts of Essex and Niagara resulted in a large number of soybean fields needing to be replanted and recent significant rainfall has had a negative impact on soybeans in many areas.
Syama Chatterton discusses the incidence of Aphanomyces and Fusarium in Western Canada. Click here for the full summary of Chatterton's presentation.Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Mary Burrows discusses the emerging pulse crop diseases she has seen in her home state of Montana, and what this could mean for western Canadian growers. Burrows also discusses the important of seed treatment in fighting these diseases. Click here for the full summary of Burrows' presentation.Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
There are both environmental and agronomic concerns surrounding the management of livestock manure. The major environmental concerns are: potential risk of nutrient accumulation in soil – particularly nitrogen (N) and phosphorus (P) – and risk of nutrient movement into surface or groundwater. Poor manure management can also cause accumulation of salts in soil, surface water or groundwater and pathogenic micro-organisms in surface water.
Research trials in the U.S., and more recently at the University of Saskatchewan, are proving what’s old is new again. In this case, the use of “old” herbicides such as Avadex, Fortress and Edge are making a comeback of sorts in a weed management system that’s been dubbed “herbicide layering.” According to Clark Brenzil, who coined the term, herbicide layering is simply utilizing two to three herbicides in sequence to tackle tough-to-control weeds and to stave off weed resistance.Indeed, herbicide tank mixtures and/or a program that utilizes a residual product in a sequential program are now the recommended practice for delayed herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide,” Brenzil notes. “Wild oats and cleavers are two great examples of this.” But even simply switching one herbicide out for another, ie. rotating herbicides, while perhaps delaying the onset of herbicide resistance, still results in selection pressure. Today, many in the industry are starting to stress the importance of using multiple modes of action and tank mixing. “The extension message is to use multiple modes of action together in weed control programs,” says Mike Grenier, Canadian development manager with Gowan. “But it’s not only using tank mixes – it’s using products in sequence, for instance to look at the soil residual herbicides as part of this management program.” The idea is simple: apply different modes of action within a season – layering – and rotate chemistries through the crop rotation. As it turns out, Avadex, Edge and Fortress herbicides fit very well into this strategy. “In our scenario, you would have Group 8, Avadex or Fortress, being soil applied either in the fall or in the early spring followed with a post-emergent program during the growing season,” Grenier notes. “So in this case of Group 1 or Group 2 product use, Avadex is the pre-emergent layer providing resistance management against wild oats.” In trials, Gowan maintains that Avadex and Fortress can provide about 90 per cent control of wild oat, while Edge (Group 3) provides 70 to 80 per cent suppression. “Then you have a post-emergent program working on a much lower level of [weed] population, so lower selection pressure. So now we have the control level approaching close to 100 per cent.” Studies find an added bonusLed by Christian Willenborg, weed scientists at the University of Saskatchewan (U of S) have been conducting research to determine if herbicide layering proves beneficial. “We have some good information in peas and some really good information in canola,” says Eric Johnson, U of S research assistant. “Graduate student Ian Epp’s research in canola showed some benefits, even with Roundup Ready canola, to be using clomazone pre-emergent to improve cleavers control.” In the studies on cleavers weed control in canola, the researchers used three different modes of action – applying clomazone pre-emergent, then followed by either Clearfield, Roundup or Liberty tank mixed with quinclorac. “Even with the Roundup system, which is already pretty effective on cleavers, we found that using three different modes of action provided weed control benefits, and some yield benefits which totally surprised us,” Johnson notes. (See Fig. 1.) The team also did studies on managing Group 2 resistant cleavers in field pea. “What we found was that if we put a pre-emergent down, that suppressed the cleavers somewhat. But then we came in and followed with a post-emergent, and we ended up with better than 80 per cent control.” (See Fig. 2.) Going forward, the U of S is starting some work on managing Group 2-resistant wild mustard and Group 2-resistant kochia in lentil. The big pictureBrenzil says herbicide layering has some merit for everyone. “What the U of S research has found is that if you have control taking place right at the point where the weed is germinating [with the pre-emergent], you’re going to get better yield response out of your crop, rather than waiting for the three- or four-leaf stage when there’s already been some competitive effect of that weed on that crop,” he notes. “By having a soil active, even if it’s not doing a fantastic job of controlling the weeds, it’s suppressing the influence of those weeds on that crop, and you’re getting a bit of a yield bump by having herbicide in the soil along with your foliar product that’s coming a little later.” An added bonus, Brenzil adds, is that by using a herbicide layering program, you’re making a pre-emptive strike against herbicide resistance. “It’s a good management tool for controlling some of those weeds that may not necessarily be that responsive to one herbicide for effective management, such as wild oats and cleavers.” At the Herbicide Resistance Summit held March 2 in Saskatoon, Jason Norsworthy made a comment about the “treadmill” of using one weed chemistry and the very real threat of developing herbicide resistance as a result. Brenzil explains: “If you use one chemistry to death and then you allow your weed populations to get very high again, then you’re just starting from square one to select for the next Group that you’ll overuse, and so on and so on, until you paint yourself into a corner and there are no herbicide options left. At this point, the only management option left will be seeding the field to a forage crop and cut for hay until the seedbank is exhausted.” With herbicide layering, “If you’ve got your soil active products on the ground, then you come in with your foliar and you’ve got a mix of two foliars that could still control that same weed – now you have three active in there of different families,” he adds. “You avoid that overuse and you don’t allow selection pressure to accumulate.”   This story originally appeared in the June 2016 issue of Top Crop Manager West.
With the confirmation of glyphosate-resistant (Group 9) kochia across the Prairies, a renewed focus on best chemfallow management practices is needed.
Is there an interaction between seeding rate of pea and lentil, disease incidence, and fungicide effectiveness? This question was the driving force behind an Agricultural Demonstration of Practices and Technologies (ADOPT) Program project.
Using several herbicides with multiple modes of effective action are essential in combatting resistance, minimizing the weed seedbank and preparing fields for success. A planned herbicide program using multiple modes of action is the best strategy for these tough-to-control weeds. An herbicide that offers multiple modes of action to help manage a variety of broadleaf weeds that can also be used in various tank-mixes to control glyphosate-resistant species will help address the challenges of weed resistance in both the current and future growing seasons. For example, last year, a group of growers in Eastern Canada tested Armezon PRO, a new Group 15 and Group 27 herbicide. With a wide application window from early post-emergence to the eight-leaf stage in glyphosate-tolerant corn and the ability to easily tank-mix with additional products, growers were able to customize their weed management to meet their needs. When tank-mixed with atrazine in glyphosate-tolerant corn, Armezon PRO provides four modes of action. Customizing weed management strategies is especially useful when weather prevents getting into the field for a pre-emergent application. Managing problem weeds with multiple modes of action provides residual activity, reducing the weed seedbank and setting up fields for the next season. 
With the 2017 growing season upon us, here’s a look at the latest seed treatments, foliar fungicides and label updates. Product information is provided to Top Crop Manager by the manufacturers.
Premier Tech, an international leader in active ingredients for sustainable agriculture and horticulture, will take the lead in the final steps to bring to full scale the manufacturing and commercialization of a selective bioherbicide. In January, the Horticulture and Agriculture Group signed a license agreement with Agriculture and Agri-Food Canada (AAFC) to finalize the development and commercialization of a product formulated from an indigenous fungus (Phoma macrostoma). Over nearly ten years, the federal department invested millions of dollars in research on this fungus and its compounds (macrocidins), which can eliminate broadleaved weeds, particularly dandelions. This breakthrough discovery has been patented in several countries and is commercially registered in the U.S. and Canada.
The late harvest in fall 2016 created more than just delays in crop removal – fields were dirty with weed growth and there was limited time for fall herbicide application. As a result, many farmers are expecting weedier fields this spring and will need to be diligent in using the best weed control strategies including pre-seed herbicides and the best in-crop solutions. To assist farmers in what will likely be a more challenging spring battle with weeds, Dow AgroSciences has announced that the Diamond Rewards herbicide offer that was previously only available to Nexera customers will be open to all growers seeding any Roundup Ready and Clearfield canola varieties this spring. Effectively immediately, with a minimum purchase of 240 acres (6 cases) of Eclipse, any Roundup Ready canola grower can qualify for the $2.00 per acre rebate. Similarly, with a minimum purchase of 240 acres (6 cases) of Salute, any Clearfield canola grower can qualify for the $2.00 per acre rebate. Nexera canola growers will continue to receive the rebate with no minimum purchase requirement. Farmers must be registered for the Dow AgroSciences Diamond Rewards program and purchases must be made between December 1, 2016 and November 30, 2017 to qualify. Click for more information on Eclipse and Salute.  
Industrial fertilizers help feed billions of people every year, but they remain beyond the reach of many of the world’s poorest farmers. Now, researchers have engineered microbes that, when added to soil, make fertilizer on demand, producing plants that grow 1.5 times larger than crops not exposed to the bugs or other synthetic fertilizers. | READ MORE
Just over 20 years ago, researchers initiated the first bioherbicide research and development program in the country at Agriculture and Agri-Food Canada (AAFC) in Saskatoon. Led by Karen Bailey (who recently retired), the program has made significant advancements in bioherbicide development for horticulture and turf crops, and more recently, promising solutions for agriculture. Bioherbicide product development is a welcome addition to the integrated weed management toolbox for crop production. Biopesticides are classified as “reduced-risk” products by the Pest Management Regulatory Agency (PMRA).
Syngenta Canada Inc. has announced the launch of Aprovia Top fungicide, offering Canadian potato growers a new tool for foliar early blight control and brown spot suppression. Early blight, caused by the Alternaria solani fungus, is found in most potato growing regions. Foliar symptoms include small, brown, irregular or circular-shaped lesions that form on the potato plant’s lower leaves later in the season. The disease prefers warm, dry conditions to develop, and can be more severe in plants that are stressed and weakened. Brown spot, caused by the Alternaria alternata fungus, is closely related to early blight and is found wherever potatoes are grown. Unlike early blight, brown spot can occur at any point during the growing season, producing small, dark brown lesions on the leaf surface. Aprovia Top fungicide combines two modes of action with preventative and early curative activity on these two key diseases. Difenoconazole (Group 3) is absorbed rapidly by the leaf and moves from one side of the leaf to the other to protect both surfaces against disease. Solatenol (Group 7 SDHI) binds tightly to the leaf’s waxy layer and is gradually absorbed into the leaf tissue to provide long-lasting, residual protection. Aprovia Top is available now for use in 2017 production. In potatoes, one case will treat up to 40 acres.
Prairie farmers primarily use urea (46-0-0), anhydrous ammonia (82-0-0), or liquid urea-ammonium nitrate (UAN) (28-0-0) as their nitrogen (N) fertilizer sources. Nitrogen fertilizer can be lost due to volatilization, denitrification or leaching, depending on how the N is applied and the weather conditions after application. 
Industry leaders met with federal, provincial and territorial (FPT) agriculture ministers to discuss Canada’s next agriculture policy framework, creating a national food policy and North American Free Trade Agreement negotiations during the Canadian Federation of Agriculture's annual industry-government FPT roundtable in St. John’s on July 19.
The Canadian Grain Commission is reducing user fees for official grain inspection and official grain weighing services and eliminating two supplementary fees for overtime related to official grain inspection services.
Canada’s minister of agriculture and his Mexican counterpart say they’re looking to increase trade between the two countries despite concerns the U.S. wants to review the North American Free Trade Agreement (NAFTA).“[There’s] many products they can produce on the fresh market side, and others that we need in this country, and there’s many products we have like canola and other products we want to export to Mexico. And that’s what we’re working on today,” said Agricultural Minister Lawrence MacAulay, after meeting with Mexico’s agriculture secretary. | READ MORE
Agri-food stakeholders from across the value chain are invited to attend the second annual National Environmental Farm Plan (NEFP) Summit in Ottawa, November 1-2, 2017. As Co-Chair of the NEFP steering committee, the Canadian Federation of Agriculture (CFA) encourages producers and farm groups to be part of this initiative that seeks to harmonize the many different environmental farm plan programs in Canada.An Environmental Farm Plan (EFP) is a voluntary, whole-farm, self-assessment tool that helps farmers and ranchers identify and build on environmental strengths, as well as mitigate risks on their operations. A National EFP (NEFP) would not be a replacement program, but rather a harmonization effort across the existing EFP programs nation wide.Building on an inaugural event held last year, summit attendees will further develop a national standard designed to connect environmentally sustainable practices at the farm level with global food buyers' growing need to source sustainable ingredients.The NEFP program is well into development, led by a steering committee comprised of participants from across the agri-food value chain. Four sub-committees are working toward developing a national protocol as it relates to data collection, standards and verification, all of which will be supported through comprehensive communications and stakeholder outreach. Summit attendees will hear from each committee, along with subject matter experts, about the progress to-date - information that will further guide steps toward this national standard.Learn more and register for the 2017 National EFP Summit by visiting nationalefp.ca. The NEFP is always seeking to add to its list of stakeholders involved in shaping this made-in-Canada solution. Interested organizations should contact co-chairs Drew Black or Paul Watson.
Canada and the European Union have finally agreed on a date for provisional application of the oft-delayed Comprehensive Economic and Trade Agreement.The provisional application of the massive deal will come into effect on Sept. 21, according to a joint-statement from Prime Minister Justin Trudeau and Jean-Claude Juncker, president of the European Commission, issued at the G20 summit meeting in Hamburg Saturday morning. | READ MORE
Weed control challenges have grown steadily worse since the first glyphosate-resistant weeds were discovered in 2001. According to a 2016 Stratus Ag Research study, resistant and tough weeds currently infest more than 100 million acres of North American farmland. For additional weed control solutions, the Enlist weed control system was developed.
Local Liberal MP Francis Scarpaleggia and Jean-Claude Poissant, Parliamentary Secretary for the Minister of Agriculture, announced $2.9 million in funding at a press conference for two McGill projects aimed at mitigating greenhouse gas emissions caused by water and fertilizer use in agriculture.
Last month Statistics Canada released the results of the 2016 Census of Agriculture. Like many of you, I was eager to read up on the results and discover how our industry has changed in the five years since the last survey was conducted.
The Species at Risk Farm Incentive Program (SARFIP) is back for 2017. Now in its 10th year, SARFIP supports Ontario producers who are enhancing on-farm habitat for species at risk across the province. The Ontario Soil and Crop Improvement Association (OSCIA), with support from Environment and Climate Change Canada and the Ontario Ministry of Natural Resources and Forestry, is pleased to continue to offer this impactful program. With streamlined funding levels and updated application forms – and up to $20,000 available per farm business – it’s easy to benefit more with SARFIP.Farms in Ontario can access cost-share dollars for on-farm projects that implement a variety of Best Management Practices (BMPs). With a diversity of project opportunities, eligible BMPs encompass activities around croplands, grasslands, shorelines, stream banks, wetlands and woodlands. Many opportunities are available to support critical habitat through SARFIP, including cross fencing for rotational grazing, watering systems for livestock, native tree planting, improved stream crossings, native grassland plantings, invasive species removal and erosion control structures, among others.SARFIP 2017 is open to all agricultural landowners in the province. Projects that provide indirect benefits to species at risk are eligible for 50 per cent cost-share, and projects that directly benefit species at risk are eligible for 65 per cent. An additional bonus of 10 per cent cost-share is available for direct benefit projects if the producer is interested in enrolling in SAR-Watch, a monitoring program that measures the impact of SARFIP projects on the ground for species at risk.To find out if SARFIP is a good fit with your farm, consult the program brochure for complete and detailed program information. All program materials, including the brochure and application forms can be found on the OSCIA website. To be eligible to participate in SARFIP, Ontario farms must have a completed 3rd or 4th Edition Environmental Farm Plan (EFP) workbook and Action Plan that has been verified and completed within the last five years.Applications are now being accepted, and funding will be allocated to eligible projects in the order in which they are received until fully allocated. Funding for this program is limited; if you have a project idea that fits, submit your application as soon as possible. Projects initiated on or after April 1, 2017 may be eligible.For more information on eligibility criteria, the application process, and program deadlines, or to sign up to an upcoming EFP workshop in your area, visit the SARFIP page on the OSCIA website at www.ontariosoilcrop.org/oscia-programs/sarfip/ or contact OSCIA directly at 519-826-3035 or This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
Team Alberta is warning the federal government of serious financial consequences to farmers if they lose the ability to use deferred cash tickets to manage wide variations in their income.The potential end of the cash ticket deferral system was included unexpectedly as part of the federal government’s Budget 2017. Team Alberta’s submission to the federal finance department’s consultation process summarizes the specific necessity and utility of this tool in farmers’ business planning strategies and tax management.“We believe that the government has overlooked the severe impact that farmers would face if this tool was no longer available,” said Kevin Auch, Alberta Wheat Commission Chair. “Farmers operate with a high degree of income volatility due to factors beyond our control and the cash ticket deferral mechanism allows us to manage risk and balance our income to ensure we can still remain profitable.”The government maintains that the cash ticket deferral mechanism is out-dated since the single desk was dismantled in 2012. But Team Alberta points out that farmers have been exposed to the same income volatility regardless of the Canadian Wheat Board’s (CWB) status, facing many of the same risks they did when the mechanism was first introduced in 1973. Data from the Western Grain Elevator Association (WGEA) indicates that the percentage of cash tickets deferred annually has remained fairly stable throughout and following the end of the CWB’s monopoly.Team Alberta further points out that removing this management tool could hamper Canada’s ability to increase agri-food exports from $55 to 75 billion per year by 2025 as outlined in the recent federal budget.“Canada’s agriculture industry is poised and ready to meet these targets,” said Jason Lenz, Alberta Barley Chair. “But we will only be able to meet them if the government works with farmers to eliminate barriers that impede growth.”Team Alberta’s submission provides examples from accounting firm MNP LLP that demonstrate impact on farm businesses – whether partnerships, sole proprietors, or corporate family farms. The information from MNP shows that removal of the deferral option will have a disproportionate and negative impact on farm operations relative to non-farm Canadian businesses of similar sizes.“The existing policy allowing for deferral of cash tickets is an important tool in ensuring that farm operations, whatever their business structure, are treated fairly relative to other Canadian businesses,” said Greg Sears, Alberta Canola Chair.D’Arcy Hilgartner, Alberta Pulse Growers Chair said: “We have a responsibility as a country to ensure that our farmers remain profitable and sustainable. The consequences of this proposed policy change would be dire for many Canadian farmers and severely limit the sector’s ability to meet growth objectives.”Team Alberta’s submission can be viewed online here.
Small planes have been flying over local farms and taking aerial photos for decades. Now, individual farmers are able to get an aerial view of a field using a small remote-controlled drone equipped with a camera. But Agriculture and Agri-Food Canada (AAFC) has been receiving information from a far more sophisticated data collection network for at least the past 30 years, according to Leander Campbell. Campbell, a geographer who specializes in geomatics, works as a remote sensing specialist with the Earth Observation team at AAFC. He says most of his work is on the AAFC Annual Space-Based Crop Inventory. He gets his data in the form of imagery from satellites and uses it to produce an accurate national crop map. “The crop map, the one I work on, is at a 30 metre resolution so each pixel is a 30 metre by 30 metre square. It covers all of Canada,” he explains. Campbell adds one of the crops mapped in year one of the crop inventory in 2009 was soybeans. Since then, the data has shown how the crop is spreading west and north on the Prairies.Campbell extracted only the soybean fields (in yellow) from Manitoba crop maps for the years 2009 and 2012.Photo courtesy of Leander Campbell, AAFC. The network Campbell gets his data from consists of several international satellites. The American satellite Landsat-8 provides optical data to create crop maps anyone can download. In addition to these data, Campbell’s team also uses microwave data from the Canadian RADARSAT-2 satellite. The combination of optical and microwave data has been shown to produce more accurate maps than maps created from either single source. These maps are created and validated using data collected by people in the field. For the Prairies, “we have agreements with the provincial crop insurance companies,” Campbell says. “It’s not a perfect system but we’re about 85 per cent and 90 per cent accurate and working to improve that.” Satellites don’t stay in orbit forever and Campbell says a backup is always an asset. Canada has plans to launch a constellation of three microwave satellites in 2018, the RADARSAT Constellation Mission (RCM), to gather data that’s even more detailed and precise than what’s available now. “There are more uses than I ever thought of,” Campbell says. For instance, crop placements, crop monitoring, research, commodity marketing, land use management and even flood forecasting in Manitoba. Microwave data collected by the European SMOS (Soil Moisture and Ocean Salinity) satellite allows Campbell’s team to operationally measure soil moisture in the top five centimetres of soil. He says most people don’t realize the Earth naturally radiates very low-level microwave energy and a satellite in space can pick up the variations in waves. Water absorbs microwave energy. When the microwaves radiate out from the Earth and pass through the soil, some of them are captured by moisture in the soil.  According to Campbell, in September 2015, Statistics Canada did not do a farmer survey, opting to use AAFC climate data to complete their crop yield forecast. Satellite data can describe how agriculture land is changing or evolving over the years, whether it’s farmland expanding by eliminating small woodlots or urban expansion covering agricultural land. These phenomena can be monitored year over year using the AAFC crop maps. Campbell has compiled maps that helped document the areas where clubroot is developing in canola. Scott Keller, a farmer from Camrose County in Alberta, contacted AAFC, asking Campbell if he could map Camrose County to determine how often canola was grown in particular fields. Keller wanted to determine which fields grew canola most often, either in a tight rotation over multiple years or in succession, in order to determine if there was a correlation between the escalation of clubroot and the rotation schedule.Map created by Campbell to monitor canola crop frequency in Camrose County, Alta. Photo courtesy of Leander Campbell, AAFC. That’s just one way satellite data can support crop management. Campbell says he’s confident that as computer technology and Internet costs come down, AAFC will be able to create more products from data because they can monitor specific areas once or several times over a growing season, or over years. Campbell and his six colleagues who create the crop maps, soil moisture reports and the normalized difference vegetation index (NDVI) reports have an international presence as well. “I know some of our maps are incorporated into more global crop assessments for global market information, especially the NDVI maps,” Campbell says. He explains that several nations around the world use satellite imagery to monitor their own crops. They meet on a monthly basis and compare data on major crops like corn, wheat, rice and soybeans through an organization called GEOGLAM. The group’s website states its vision is to “use coordinated, comprehensive and sustained Earth observations to inform decisions and actions in agriculture through a system of agricultural monitoring.” https://cropmonitor.org Canadian farmers can access existing maps and data products online from the AAFC website. Because these maps are highly detailed, producers may experience difficulty downloading them on devices while in the field, but they can still view them online. According to Campbell, that’s the sort feedback he needs to hear from farmers. “In our little world we have all these high-end computers and that works fine for us, but it may not be the most practical thing for others,” Campbell says. And, he’s looking forward to finding more ways to help farmers and make the website more user-friendly. As satellite mapping matures, both farmers and scientists will view agriculture in new ways and Campbell is enthusiastic about the possibilities. “It’s a really exciting time to be in our field,” Campbell says. This article originally appeared in the June 2016 issue of Top Crop Manager West
Timely information about drought conditions can help agricultural producers, agribusiness, government planners and policy-makers, emergency preparedness agencies and others to better plan for and proactively respond to drought. The Canadian Drought Monitor tracks a wide range of drought-related information and boils it all down to easy-to-understand, online monthly maps.“The Canadian Drought Monitor is kind of an early warning system. It provides a clear picture of what is occurring in near real-time. We’re tracking drought conditions continuously so that we know where we’re at and we can respond quicker to problems,” explains Trevor Hadwen, an agroclimate specialist with Agriculture and Agri-Food Canada (AAFC). AAFC leads the Canadian Drought Monitor initiative, working in close collaboration with Environment Canada and Natural Resources Canada.He notes, “There is a very large process around developing the Drought Monitor maps that is unique to this particular product. It is not as simple as feeding climate data into a computer and having it spit out a map.” That’s because drought is difficult to measure. It can creep up on people as the cumulative effects of ongoing dry conditions gradually mount up. Its effects are often spread over broad areas. And different groups define drought conditions differently, depending on their interests and needs.So, the Canadian Drought Monitor draws together diverse information like precipitation amounts, water storage levels, and river flow amounts, as well as information about drought impacts on people. And it combines various drought indicators used by the agriculture, forestry and water management sectors into a single composite indicator.“All that information is put together to create one easy-to-read map product, with just five classes of drought or dryness. Users can get a very clear picture of the areal extent and severity of the drought with one look at the map,” Hadwen says.Drought classificationThe five drought classes are: D0, abnormally dry – an event that occurs once every three to five years; D1, moderate drought – an event that occurs every five to 10 years; D2, severe drought – an event that occurs every 10 to 20 years; D3, extreme drought – an event that occurs every 20 to 25 years; and D4, exceptional drought – an event that occurs every 50 years. The monthly maps are available in an interactive form that allows users to see the changes in drought location, extent and severity over time.The Canadian Drought Monitor provides useful information for people in many sectors. Hadwen gives some examples: “For agriculture, the information helps with things like where people might want to market grains, where there might be shortages, where there might be areas of good pasture, where livestock reductions might be taking place, all those types of things. The information is also very valuable outside of agriculture, in terms of water supplies, recreational use, forest fires – the list can go on for quite a while.”The Canadian Drought Monitor maps feed into the North American Drought Monitor maps. “The North American Drought Monitor initiative started about 12 years ago. The U.S. had been doing the U.S. Drought Monitor project for a number of years, and Mexico and Canada were interested in doing similar projects,” Hadwen notes. “So we joined forces to create a Drought Monitor for the continent.” All three countries use the same procedures to monitor, analyze and present drought-related information.The continent-wide collaboration provides a couple of big benefits. “Number one, drought doesn’t stop at the borders,” he says. The North American initiative provides an integrated view of drought conditions across the continent.“Also, the Drought Monitor is extremely powerful in terms of the partnerships that have developed and the linkages to some of the best scientists in North America. We share ideas and build off each other, developing better and more accurate ways of assessing drought. We can utilize some of the information generated from U.S. agencies, like NOAA [National Oceanic and Atmospheric Administration] and the National Drought Mitigation Center, and agencies in Mexico. This collaboration effort helps increase the efficiency of the science and the technical aspect of drought monitoring.”According to Hadwen, the continental collaboration has been really helpful in building Canadian agroclimate monitoring capacity. “Over the last decade or so we have certainly matured a lot, and we’ve started to develop some really interesting tools and applications for Canadian producers and agricultural businesses to help deal with some of the climate threats to the farming industry, including droughts, floods, and everything else,” Hadwen says.AAFC’s Drought Watch website (agr.gc.ca/drought) provides access to the Canadian Drought Monitor maps and to other agroclimate tools such as maps showing current and past information on precipitation, temperature and various drought indices, and the Agroclimate Impact Reporter (scroll down for "When complaining about the weather makes a difference"). When complaining about the weather makes a differenceIf you love to talk about the weather's impacts on your farming operation, the Agroclimate Impact Reporter (AIR) could be for you. If you want your comments about these impacts to make a difference, then AIR is definitely for you. And if you want to find out how the weather is impacting agriculture in your rural municipality, your province, or anywhere in Canada, then AIR is also for you.AIR is a cool online tool developed by AAFC that grew out of a previous program to collect information on some drought impacts. "We have had a program in place to monitor forage production and farm water supplies in the Prairies for well over 15 years. Then about three years ago, we started to develop a tool to replace that program – a tool that would be national in scope and that could gather information on a whole range of agroclimate impacts," Hadwen explains.AIR taps into a volunteer network of producers, AAFC staff, agribusiness people and others. "We use crowd-source data for this, gathering information from a whole wide variety of people. Some of them we know through our registered network, and others have a subscription to our email box and provide comments to us on a monthly basis," he says."We're trying to gather as much information from as many people as possible on how weather is impacting their farming operations. We ask the participants to do a short [anonymous] monthly survey, usually about 25 quick multiple choice questions, to let us know how things are going."AIR is collecting impact information in several categories including: drought, excess moisture, heat stress, frost, and severe weather (like tornadoes and hail storms)."We plot that information and produce a whole bunch of individual maps showing very subject-specific information from each survey question," Hadwen notes. "We also have a searchable online geographic database. On a map of Canada, you can zoom in on different regions and see where we're getting reports of a large number of impacts or not as many impacts. You can even drill down into that map and see the exact comments that we are getting from [the different types of respondents, in each rural municipality]."The information collected through AIR provides important additional insights into the weather conditions and related issues and risks. He says, "Sometimes the data we have in Canada isn't as fulsome as we would like, and sometimes it doesn't tell the whole story. For instance, the data [from weather stations in a particular area] might show that it didn't rain for a very long period and the area is in a very bad drought, but the producers in the area are telling us that they got some timely rains through that dry period that helped their crops continue to grow. Or, the data might show that we received a lot of rain in a season – like we did in 2015, if you look at the overall trend – but the farmers are telling us that there were big problems in the spring. So, combining both those types of information certainly helps draw the whole story together a little better."AIR information feeds into the Canadian Drought Monitor to help in assessing the severity of drought conditions. As well, the AAFC's Agroclimate group incorporates AIR information into its regular updates to AAFC's Minister and senior policy people; it helps them to better understand what is happening on the land, and that knowledge can help in developing policies and targeting programs.Information from AIR is also valuable for businesses that work with producers, such as railroad companies wondering about regional crop yields and where to place their rail cars, and agricultural input companies wondering if they need to bring in extra feed or fertilizer.AAFC is in the process building AIR into a national program. "We want to collect agroclimate impact information from right across the country. We have a history in the Prairie region, so we have more Prairie producers providing information. We've made inroads into B.C., so we're getting some reports from there already," Hadwen says. "[Now] we're going out to Atlantic Canada and Ontario. And over the next couple of years, we'll be expanding AIR right across the country."If you are interested in becoming a volunteer AIR reporter, visit www.agr.gc.ca/air.This article originally appeared in the June 2016 issue of Top Crop Manager West.
Grain conditioning is a widely used term that can be used to identify situations where either aeration or natural air drying is being utilized. Knowing the difference between aeration and natural air drying will aid in selecting aeration systems, equipment, and storage that will best suit your needs.
For the tractor-mounted sprayer market for 2017, John Deere introduces the Frontier LS11 Series 3-point Mounted Sprayers. These economical, efficient sprayers are ideal for making spray applications to pastures, small or large fields, road ditches, fence rows, specialty crops and for other types of crops and field uses.The LS11 Series Sprayers have many features of the larger pull-type sprayers, including breakaway booms, manual and automatic controls and optional foam marker systems, that help operators reduce skips and overlaps.The Frontier LS11 Series Sprayers come in four different boom-width models, from 25-ft. to 40-ft., that customers can select from based on their application needs. The LS11 Series Sprayers are available in two tank sizes, 250-gallon or 300-gallon; can be powered either hydraulically or by the rear power take-off (PTO); and are Category 2 or Category 3 quick-hitch compatible. For greater convenience, the heavy-duty poly tanks are specifically designed with a tear-drop shape to allow liquid to more completely drain from the sprayers.Additional standard features of the LS11 Series Sprayers include a handheld spray wand to reach small or hard-to-access areas; integrated parking stand and fork-lift pockets to make hook up, moving and loading the sprayer easier; and wet booms that extend the life of sprayer hardware. All models come with a single nozzle body; however, a triple nozzle body is available on the 40-ft. boom sprayer.For more information on the new Frontier LS11 Series 3-point Mounted Sprayers from John Deere, see your local John Deere dealer.
The most advanced grain harvesting technology from front to back is featured in the combines and headers John Deere is introducing for model year 2018 production. This includes four new S700 Combine models (S760, S770, S780 and S790) that offer producers significant improvements in “smart” technology, improved operator comfort and better data, along with the 700C/FC Series Corn Heads and 700D Drapers for more efficient grain harvesting.Building on the proven field performance of the S600 Combines introduced in 2012, the new S700 Combines incorporate the latest in automated harvesting technology. Many of these changes make it easier on the operator by allowing the combine to make needed adjustments automatically, on the go.To make it easier for operators to maximize the performance of their new S700 Combine, John Deere introduces the Combine Advisor package. Combine Advisor incorporates seven technologies to help operators set, optimize and automate the combine for the most effective harvesting performance based on their crop and field conditions.Auto Maintain is a function within Combine Advisor that is supported with ActiveVision cameras.Another addition to the S700 Combines is Active Yield technology that automatically calibrates the mass flow sensor. This saves time by eliminating the need for manual calibrations and ensures the best data is collected.The biggest physical difference customers will see in the S700 Combines compared to previous models is in the cab. This starts with a new state-of-the-art CommandCenter, providing a common user experience across Deere’s larger tractor and self-propelled sprayer lines, that emphasizes customization and operator comfort.Machine performance features of the CommandCenter include a Gen 4 interface and monitor with 4600 processer; CommandArm and multi-function control lever with greater ergonomic design and customizable buttons; premium activation with AutoTrac, RowSense and HarvestDoc; and Extended Monitor and mobile device features. In addition, operators will find set up and start up much quicker and easier, thanks to more intuitive harvest run and setup screens.The new cabs feature either leather or cloth seats that swivel 7.5 degrees left and 15 degrees right for improved visibility; enhanced seat ventilation for greater comfort; improved seat cushion with optional leather seat; and additional grain tank mirrors for improved visibility of the grain tank.New corn head and platform, tooAlong with the S700 Combines, John Deere is introducing the 700C/FC (folding corn head) Series Corn Heads with the RowMax row unit. The RowMax row unit provides up to a 50 percent increase in the life of the row unit gathering chains and features solid-alloy bushings that reduce pin and bushing wear.The 700C/FC Series Corn Heads are available in 6- to 18- row models, in 20-, 22- and 30-inch row widths. The StalkMaster stalk-chopping option is available on all models. Folding corn heads are available on 8- and 12-row units, which allow operators to spend more time harvesting and less time and hassle disconnecting, trailering and reconnecting heads when moving from field to field.For corn growers harvesting high moisture corn, there are several enhancements available specifically tailored to better handle this demanding crop. High moisture corn enhancements on the corn head include an auger floor insert to ease crop handling and a lower auger height to minimize crop damage.For small grains, Deere introduces the 700D Rigid Draper, which provides a 20 percent increase in capacity in tough harvesting conditions over the previous model. The 700D features a top crop auger that’s 50 percent larger in diameter (now 18 inches) with heavy-duty drives, high-performance gauge wheels, and a new center section seal kit that reduces center section grain losses by up to 45 percent in canola.For more information on the new S700 Combines, 700C/FC Corn Heads, 700D Rigid Draper and other harvesting solutions from John Deere, see your local John Deere dealer.
Producers looking for an affordable vertical tillage tool that sizes and buries residue in the fall or prepares smooth seedbeds in the spring have another option: The new Frontier VT17 Series Vertical Tillage Tool from John Deere.The VT17 Series offers fore and aft leveling adjustments that can quickly be made using a simple crank system. Gang angles on the implement can be adjusted from zero to 12 degrees for less or more aggressive tillage. Operators can fine-tune the machine’s operating depth from zero to three inches using a pin-and-clip adjustment.The VT17 comes with the choice of 20-inch straight or 22-inch concave blades. Each blade type is fluted for improved residue flow, sizing, and mixing, even with aggressive gang settings. The machine’s spring-adjustable rolling baskets run perpendicular to the blade direction to break up clods and improve field leveling and seedbed uniformity.Tandem dual wheels, standard equipment on all VT17 models, are mounted on a tubular carriage frame that’s hydraulically raised and lowered. As an option, an adjustable middle breaker can be mounted between the wheels on the center frame to disrupt soil in the center-line of travel that’s left open where the front and rear gangs do not overlap.Four sizes of VT17 Series Vertical Tillage Tools are available with working widths ranging from 10 to 15 feet. Tractor horsepower requirements range from 85 to 150 horsepower depending on the width of the model it’s paired with.Frontier equipment is available exclusively at your local John Deere dealer. For more information, click here.
New Holland Agriculture has set a new World Record by harvesting 16,157 bushels of soybeans in eight hours with the CR8.90 combine. The record-breaking performance, which took place in the Bahia State of Brazil, was certified by independent adjudicator RankBrasil. The performance On record setting day, harvesting started at 10:30 am and finished at 5:30 pm, having harvested approximately 222 acres (90 hectares). CR8.90’s average throughput was 2,020 bushels/hour in a crop yielding an average of 72.6 bushels/acre, and 17 per cent average moisture content. The record-setting performance and efficiency was achieved by harvesting 73.5 bu of soybean per gallon of fuel. The CR series The CR8.90 follows the footsteps of the range topping CR10.90, which proved it is the world’s highest capacity combine when it captured the World Record for harvesting an impressive 29,321 bushels of wheat in eight hours in 2014 – a title it holds to this day. For more information on the CR series, click here.
To serve a growing farm equipment market in Eastern Canada and the United States, Väderstad Sales Inc. has opened a new office and parts distribution warehouse in Cambridge, Ont. The Swedish farm equipment manufacturer offers unique and cost effective equipment to progressive farmers in 30 countries worldwide. The new Väderstad location signals a renewed focus on the North American farm equipment market. Manufactured in Sweden, all Väderstad farm equipment is built to create optimal field conditions. Väderstad’s North American equipment lineup includes drills, planters and cultivators. Equipment models available include: Drills: Spirit, Rapid and BioDrill (attachment to convert tillage equipment into cover crop drill) Cultivation equipment: Carrier, Carrier X, Carrier L, Carrier XL, Swift, Opus, TopDown and Cultus, ranging from 3.5 m to 12 m widths Planters: Tempo planters ranging from 4-16 rows with the most versatile precision high speed lineup in the market The new Väderstad parts warehouse supports all dealers and customers across North America, including 28 Eastern Canada dealer locations. Visit vaderstad.com/ca to find your local dealer or for more information about Väderstad’s innovative farm equipment design and lineup.
Safe storage of grain on farm is a key to successful farm management. Harvested grain may be put into bins at acceptable moisture contents, but is it safe? Knowing what temperature and moisture contents are acceptable is critical for the safe storage of grain. The following information sheds some light on what to watch for in stored grain during springtime conditions. More stored grain goes out of condition or spoils due to lack of temperature control than for any other reason. It cannot be emphasized enough that the control of temperature in a bin of stored grain is absolutely critical. Geographically in Western Canada, we are located in a region where we get North America’s most severe temperature fluctuations from one season to the next. The transition between these extremes can happen rapidly or gradually. It is during these transition periods when stored grain is most at risk, due to a phenomenon called moisture migration. Moisture migration happens inside the bin when the difference in grain temperature and the outside air is the most extreme. Properly drying and cooling your grain in the fall is crucial to preserving grain quality through the fall and winter months, and well into spring. If your grain was harvested in hot, dry conditions in the fall you must be careful to bring down the temperature of that grain to enable safe storage through the winter. Likewise, if due to weather conditions at harvest time you have put your grain in the bin at a higher moisture content than usual, you must also be careful to lower the temperature to a point where you can safely store the grain over the winter. As outside temperatures begin to rise in springtime, continued monitoring of your grain bins is required. In spring, as the ambient temperature of the air outside the bin starts to warm up the bin wall also tends to warm, which in turn warms the adjacent grain. This results in the air adjacent to the bin wall warming up as well. At this point the warm air creates a moisture current that moves upward through the grain on the outside perimeter of the grain mass. As this air warms up and starts to move, it will pick up moisture from the grain and carry it upwards. As the moistened air nears the top of the bin, it moves toward the center where it encounters cooler grain temperatures. This air cools down and starts to move down the center of the bin, laden with the moisture it accumulated during the upwards cycle along the bin wall. During this part of the cycle the air starts to release this moisture. The lower the air migrates in the bin, the more moisture it will give off. Therefore, high moisture due the condensation of the cooling air occurs at the bottom center of the bin. In and around this area of high moisture you can expect grain spoilage to occur. If grain is to be stored in the bin for any length of time it is important to bring the grain temperature up to a point that will prevent the abovementioned from happening. In order to accomplish this, it is recommended that the grain temperature in the bin be raised to approximately 10 C. It is important as a producer to consult safe storage charts that will show what length of time you can store the grain at its’ current moisture and temperature, continued monitoring is vital. Aeration (warming) at this point should be accomplished with .05 to .1 cfm/ bus, and only until the desired, uniform temperature is achieved throughout the bin. From this point forward going into warmer temperatures, the temperature of the grain should be monitored throughout the summer and controlled accordingly using aeration. By utilizing aeration inside of grain bins you are able to minimize the effects of moisture migration and maximize the benefits of temperature control within your bin. In circumstances where you need to warm grain to finish drying in springtime conditions, it is recommended that the temperature be brought back up gradually. This will help preserve the quality of the grain kernel. Once the grain has been successfully dried, it is recommended that when possible the grain be cooled again to be stored at approximately 10 C. In summary, monitoring moisture and temperature conditions in your bin, and having an aeration system in place to help regulate these conditions, is key to successful grain storage.
Spraying chemicals has expanded far beyond in-crop herbicides to include fungicides, pre-harvest, and other late season applications in many fields. Challenges arise as growers transition to spraying at different times of the year and into different crops, canopy heights and densities.
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences."The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
The Canadian pickup truck market caters to the multiple needs of those in need of a truck for either work or personal use. But pickups that serve both the workplace and family are becoming the norm. Trying to offer buyers an unbiased perspective is one of the reasons I started the Canadian Truck King Challenge 10 years ago. Each year, a group of journalist judges continue to fulfill that original mandate: testing pickup trucks and vans the same way owners use them.
If you leave your pivot exposed all through the winter, you’re going to be working on it a lot longer in the spring,” says Jeff Ewen, an irrigation agrologist with the Saskatchewan Ministry of Agriculture in Outlook, Sask. To help producers prevent damage from winter’s storms and bone-chilling temperatures, Ewen offers a number of winterizing tips.
For growers considering direct-cut harvesting canola, there are many factors that play a role. Researchers in Saskatchewan are trying to provide growers with more information in a three-year project comparing the effectiveness of three different direct-cut header types (draper, rigid auger, and extended knife auger [Varifeed]) with windrowing treatments, focusing on header loss and performance.Initiated in 2014, preliminary results from the first two years of the project are showing similar trends, which researchers expect to be able to confirm at the end of the 2016 crop season. An economic analysis of the three-year project will also provide additional information to support decision-making.  The project includes three study locations – Indian Head, Swift Current and Humboldt – and uses the same protocols and headers at each location. Researchers have been able to refine their testing methods in the first two years, which will strengthen the information collected at the end of the project. The project also compared two types of canola varieties, a standard hybrid variety (InVigor L130) and two shatter resistant varieties (InVigor L140P and Dekalb 75-65 RR). Factors such as yield, header loss and loss location, environmental shatter loss and various quality components are measured.“The results from the first two years of the project are showing very similar trends,” explains Nathan Gregg, project manager with the Prairie Agricultural Machinery Institute (PAMI). “Although all of the headers performed well, the Varifeed with the extendable cutter bar does show some marginal gains in loss retention. It seems to be able to retain more of the shatter loss that occurs with all of the headers.” Gregg adds that from the observations so far the extendable cutter bar allows it to go further forward, which in theory helps to retain losses from the reel. It also provides for smoother crop flow sideways to the centre of the header and then into the feeder house. This smoother crop flow means less violence and less shattering occurring in the conveyance process.“The Varifeed was also a bit more operator friendly and is a little easier to run. The extendable cutter bar is a bit more forgiving and can just go ahead/back to match the crop canopy conditions with the push of a button in the cab. Although the Varifeed provides some advantages, it doesn’t mean the other headers don’t work well. The draper does a good job, but it does take more attention to detail as far as reel position and reel speed to match to the crop canopy. However, the draper header with its ground-following floatation system performed a bit better under lodged crop conditions.” A key objective of the project is to try and identify the source and location of the header losses. In 2016, researchers increased the number of sample pans, which are placed in the crop across the width of the header and into the zone just beyond the header into the adjacent crop. “So far, the preliminary results show the higher proportion of losses are at the perimeter of the header, with another spike of losses at the centre of the feeder house,” says Gregg. “The pattern of losses is similar for all of the headers compared, although there are some differences in the degree of loss. These results are not surprising and are similar to research conducted elsewhere in Sweden and in other regions.” With the higher shatter losses concentrated at the perimeter of the header, researchers also wanted to compare losses of different dividers. Powered side cutters, including a vertical knife and a rotary knife were compared with regular passive end point dividers. Overall, the rotary knife had the highest losses of any configuration. The losses were not only higher but also higher for a wider zone (more than one foot at the point). The losses with the vertical knife were lower, with the regular passive divider showing some of the least loss. Researchers are not sure if the results are universal, but under the harvest conditions in the locations tested, the results from the divider losses were fairly consistent.   View the embedded image gallery online at: https://www.topcropmanager.com/index.php?option=com_k2&view=latest&layout=latest&Itemid=1#sigProGalleria5d908e4050  “One caveat to the findings is the question of why power dividers are being used in the first place,” explains Gregg. “Generally, power dividers are used on swathers for example to allow forward progress without the crop balling up and catching on the crop divider. However, in a straight cut situation, if conditions are right and crop material is drier, power dividers may not be necessary for forward movement. Overall, the passive divider provided a smooth sleek transition and the potential for lower losses in the conditions we have seen so far. Therefore, a tip for growers who are straight cutting and trying to use the header they have, it may be worth some time investment to install cardboard and duct tape, or whatever, to help make the transition at the divider point and around the edge of the header smoother.”The preliminary results of the variety trial comparisons were similar after the first two years of the project. Researchers will be able to provide better details after the 2016 growing season results are in and an economic analysis is completed. “In conventional hybrid canola, the standard control swath and combine treatment actually yielded the highest,” Gregg says. “The losses in the straight cut treatments were a bit higher and there were some additional losses to wind. However, the shatter resistant varieties performed well across all treatments, with the straight cut treatments yielding the highest. We need to complete the economics, however, the results so far indicate that investing in some sort of shatter resistant canola variety would be a very good consideration for growers who are planning to straight cut.” “Although header choice plays a role in minimizing losses, other management decisions, choice of variety and harvest timing may hold more potential to impact yield than specific equipment,” adds Gregg. “As the practice of straight cutting canola gains traction, some growers will move to a specific header for the task, but in the meantime we are not seeing anything that suggests they need to rush out and do that immediately. There are several factors that come together at harvest and we are trying to look at some of those. We have another project underway looking at crop maturity and harvest timing and the potential of using desiccation for straight cutting, and the impact these may have on combine performance (settings, fuel use, productivity, etc). When straight cutting, growers need to be patient and wait for the crop to be ready. In the future desiccation may be one of the tools that becomes more important.” The project is jointly funded by SaskCanola, Saskatchewan Ministry of Agriculture and the Canada-Saskatchewan Growing Forward II Bilateral Agreement and the Western Grains Research Foundation.
US researchers have maintained that miscanthus, long speculated to be the top biofuel producer, yields more than twice as much as switchgrass in the US using an open-source bioenergy crop database gaining traction in plant science, climate change, and ecology research. "To understand yield trends and variation across the country for our major food crops, extensive databases are available — notably those provided by the USDA Statistical Service," said lead author Stephen Long, Gutgsell professor of Plant Biology and Crop Sciences at the University of Illinois. He added: "But there was nowhere to go if you wanted to know about biomass crops, particularly those that have no food value such as miscanthus, switchgrass, willow trees, etc." To fill this gap, researchers at the Energy Biosciences Institute at the Carl R. Woese Institute for Genomic Biology created BETYdb, an open-source repository for physiological and yield data that facilitates bioenergy research. The goal of this database is not only to store the data but to make the data widely available and usable. | READ MORE.  
According to research by VTT Technical Research Centre of Finland, extraction with deep eutectic solvents (DESs) offer an efficient, sustainable and easy method for dissolving proteins from agrobiomass by-products. DESs are mixtures of solids that form a liquid solution at low temperatures when mixed in suitable ratios. The method has been tested on separating protein from BSG, rapeseed press cake and wheat bran, all of which contain significant amounts of protein. These food industry by-products contain significant amounts of fibre, which decreases their suitability as feed for production animals that are not ruminants. Brewer's spent grain responded best to protein separation with DES: almost 80 per cent of the protein in BSG could be separated, while conventional extraction methods can achieve no more than 40 per cent. The separation of other substances, such as carbohydrates, can be optimised through the choice of DES. This new protein enrichment method can particularly benefit breweries and animal feed producers, but there are hopes that after further research, this method could also find applications in the food industry. | READ MORE.
As OMAFRA’s industrial crop specialist based at the Simcoe Research Station, Jim Todd works with non-food crops that have a variety of industrial uses – including energy production, or as a source of specialty oils, chemicals or medicinal compounds.  Although predominantly used as an energy source, petroleum also serves as an industrial feedstock for the manufacture of many products used in daily life. For various reasons, countries around the world are searching for renewable replacements for petroleum. One promising alternative comes from the seed oils of plants. There are hundreds of different types of plant seed oils, many of which contain fatty acids that are structurally similar to those obtained from petroleum and so could be used in the manufacture of sustainable, environmentally friendly designer oils with specific end uses. Researchers from OMAFRA and the University of Guelph are currently investigating the potential of growing two unique plants, Euphorbia lagascae from the Mediterranean and Centrapalus pauciflorus from Africa, as sources of vernolic acid, a naturally occurring epoxidized fatty acid that can directly substitute for the synthetic vernolic acid made from petroleum, soy or linseed oil.  Epoxidized fatty acids are useful as raw materials for a wide variety of industrial processes including the synthesis of chemicals and lubricants.  Vernolic acid is most commonly used as a plasticizer in the manufacture of plastic polymers such as polyvinyl chloride or PVC.  The main goal of the three-year study is to test the suitability of Euphorbia and Centrapalus for commercial cultivation under Ontario’s climatic conditions. Trials to identify suitable varieties and provide information on the agronomic requirements for successful cultivation are ongoing. Other factors being evaluated include seeding practices, fertility and water requirements, harvesting methods, and weed/pest control. Oil has been extracted and analyzed to determine the range of total oil yield and vernolic acid content. Overall, both plants have performed well, but researchers have identified a few key areas that need further research.  Field germination rates remain low, indicating a need for breeding to improve this trait and efficient harvest of Centrapalus will require the development of specialized harvest and seed cleaning equipment. 
As foreign competition and falling U.S. demand are hurting American tobacco farmers, a Virginia company is preparing the crop’s second act as a biofuel. Tyton BioEnergy Systems of Danville is testing its technique for extracting the plant’s fermentable sugars on a small scale and plans to start industrial production in 2017, Peter Majeranowski, the company’s co-founder and president, said during a recent investor webinar. Tobacco has a lot to recommend it as a biofuel source. Most industrial crops are high in either sugar or oil. Tobacco has both, and Tyton’s plant breeders have doubled or tripled the content of both in the company’s specialized lines, Majeranowski says. Tobacco is relatively low in lignin, the compound that gives plants their rigidity. “It’s kind of a soft plant and requires a less aggressive or more mild process to break it down,” Majeranowski says. Easier breakdown leads to lower processing costs, he says. | READ MORE.
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Jan. 20, 2017 - The Vancouver Declaration resulting from the First Ministers' Meeting in March 2016 saw the beginning of a co-ordinated national approach to carbon risk mitigation. Buoyed by support from high-profile business groups (including key oil and gas sector leaders), the First Ministers' Meeting on Dec. 9, 2016 in Ottawa saw the adoption of the Pan-Canadian Framework on Clean Growth and Climate Change, which included several significant announcements regarding federal investment in green infrastructure, public transit, and clean technology and innovation. Canada's industrial powerhouse, Ontario, is ahead of the pack when it comes to low-carbon electricity policy, and has been for quite some time. Ten years after the launch of the province's early procurement programs for wind, solar, hydro and other forms of renewable energy, the province enjoys a vibrant renewable energy sector with leading-edge manufacturing capabilities, a coal-free electricity system, and a project development and finance sector that is active around the globe. Across the U.S. border, things have changed somewhat recently, at least, at the federal level.  | READ MORE.
Today many biofuel refineries operate for only seven months each year, turning freshly harvested crops into ethanol and biodiesel. When supplies run out, biorefineries shut down for the other five months. However, according to recent research, dual-purpose biofuel crops could produce both ethanol and biodiesel for nine months of the year – increasing profits by as much as 30 per cent. “Currently, sugarcane and sweet sorghum produce sugar that may be converted to ethanol,” said co-lead author Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “Our goal is to alter the plants' metabolism so that it converts this sugar in the stem to oil – raising the levels in current cultivars from 0.05 per cent oil, not enough to convert to biodiesel, to the theoretical maximum of 20 per cent oil. With 20 per cent oil, the plant's sugar stores used for ethanol production would be replaced with more valuable and energy dense oil used to produce biodiesel or jet fuel.” A paper published in Industrial Biotechnology simulated the profitability of Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) with 0 per cent, 5 per cent, 10 per cent, and 20 per cent oil. They found that growing sorghum in addition to sugarcane could keep biorefineries running for an additional two months, increasing production and revenue by 20-30 per cent. | READ MORE
Dec. 9, 2016 - The federal and provincial governments have teamed up to help implement a bioeconomy strategy for Northern Ontario. The two senior levels of government are providing a total of $216,792 to help put a plan into action aimed at creating new renewable energy opportunities throughout the North. Developed in 2015 by the Biomass North Development Centre, in partnership with the Union of Ontario Indians, the strategy will look to reduce policy and regulatory barriers for the industry, develop a skills and training road map for future workers and better inform the public and potential partners about biomass applications and concepts. “This is an opportunity of partnerships and benefits for all of the North,” said Dawn Lambe, the biomass development centre's executive director. | READ MORE.
Dec. 1, 2016 - An Italian company is interested in turning biomass into a new southern Alberta industry. And the Alberta government is providing the data to show what would work. Representatives from Alberta Economic Development and Trade, along with a spokesperson for Beta Renewables from Tortona, Italy, outlined the potential to Lethbridge County Council on Monday. Earlier this year, the county was one of five Alberta jurisdictions to sign onto a formal biomass mapping project across the province. The study found 12 million tonnes of biomass available annually in the form of straw and other byproducts of the region’s grain and speciality crop production – plus 633,000 tonnes of waste from livestock production. “This is good news,” Reeve Lorne Hickey said, as council members asked for more details. For Lethbridge-area farms growing flax, one councillor pointed out, it could provide a way to get rid of flax straw – too strong to be used like other straw. | READ MORE.
The president of a new farm co-op says it's working to sign up 200 to 300 members to supply corn stalks and leaves, also known as stover, as well as wheat stalks, to a proposed new plant in Sarnia, Ont., that will turn the biomass into sugar. The Sarnia Observer reports. | READ MORE
August 10, 2016 - A UBC professor’s flax research could one day help Canadian farmers grow a car fender. In a recent study, UBC researcher Michael Deyholos identified the genes responsible for the bane of many Canadian flax farmers’ existence; the fibres in the plant's stem. “These findings have allowed us to zero in the genetic profile of the toughest part of this plant and may one day help us engineer some of that toughness out,” says Deyholos, a biology professor at UBC's Okanagan campus. “With further research, we might one day be able to help farmers make money off a waste material that wreaks havoc on farm equipment and costs hundreds of hours and thousands of dollars to deal with.” As part of his research, Deyholos and his former graduate student at the University of Alberta dissected thousands of the plant’s stem under a microscope in order to identify which genes in the plant's make up were responsible for the growth of the stem, and which weren’t. Due to the length of the Canadian prairie’s growing season, where flax is grown, farmers typically burn the stems, known as flax straw, as opposed to harvesting the material. In many European countries, flax straw is used as an additive in paper, plastics and other advanced materials such as those used in the production of automobiles. Currently, Canadian flax is used only for the value of its seeds, which can be eaten or broken down into flaxseed oil. Flaxseed oil is used in the manufacturing of paints, linoleum, and as a key element in the manufacturing of packaging materials and plastics. According to the Flax Council of Canada, Canada is one of the largest flax producers in the world with the nation’s prairie provinces cultivating 816,000 tonnes of the plant in 2014/15 on 1.6 million acres of land.Deyholos’ research was recently published in the journal Frontiers of Plant Science.
August 2, 2016 - The Canada and Manitoba governments are supporting a greener, more sustainable economy through the $1-million Biomass Energy Support Program.   Applications are currently being accepted for this continuing program, which is funded under Growing Forward 2.  It includes $500,000 in grants to help coal users transition to renewable biomass fuel.  Another $500,000 is available for applied research projects that support the growth of the biomass industry in Manitoba.   “The Government of Canada is committed to increasing the use of clean and sustainable technology,” says Canada's agriculture minister, Lawrence MacAulay.  “Making investments in the use of renewable biomass fuels through research and innovative practices will help the agricultural sector to be more competitive in a global economy, while reducing greenhouse gas emissions.” Funding can be used to convert coal heating systems to use biomass as the fuel source.  Current biomass manufacturers can also apply to expand their operations and meet consumer demands.  The maximum grant available is $50,000.  Eligible biomass fuels include: agricultural residue such as wheat and flax straw, sunflower hulls or compacted biomass-like wheat and oat pellets; forestry residues such as wood chips or salvaged timber; and biomass crops such as switchgrass, willow and poplar.   Projects with short turnaround times that support Manitoba’s coal reduction goal are given priority in the funding approval process.  The funding for applied research projects is intended to address gaps or identify opportunities for business and technology in the biomass sector.  The deadline to apply for research and capital upgrade grants from the Biomass Energy Support Program is Sept. 30.  For more information about the program and how to apply, visit: www.manitoba.ca/agriculture/innovation-and-research/biomass-energy-support-program.html.  Last year, 21 projects received funding from this program.  Since 2012, it has invested approximately $3 million to help farms and businesses transition to biomass energy, leveraging additional contributions of approximately $3 million.  Projects have reduced the amount of coal used by over 10,000 tonnes and greenhouse gas emissions by over 15,000 tonnes annually.  The federal and provincial governments are investing $176 million in Manitoba under Growing Forward 2, a five-year, federal-provincial-territorial policy framework to advance the agriculture industry, helping producers and processors become more innovative and competitive in world markets.  For more information, go to www.gov.mb.ca/agriculture/growing-forward-2. 

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace