Specialty Research
Innovative research is shedding new light on grain filling in oat, including the oft-overlooked occurrence of unfilled kernels. The research has overturned some common assumptions about oat grain filling and is opening the way to faster development of higher yielding and better quality oat varieties.
Published in Plant Breeding
In response to the Federal Provincial and Territorial (FPT) Agricultural Ministers' commitment to a comprehensive review of Business Risk Management (BRM) programs over the coming year, several agricultural organizations have formalized their structure and plans as the AgGrowth Coalition. The Coalition has committed to advocacy efforts and policy research to position industry as a trusted, authoritative partner in this critical review process.

At a recent meeting in Toronto the Coalition discussed and agreed to a strategy for the path forward in ensuring meaningful participation of industry in the BRM review. Members committed time and resources to guarantee that agriculture has a significant voice in shaping the next generation of farming policy and programs.

To that end, the AgGrowth Coalition is pleased to announce the coalition's Chair, Mark Brock and Vice Chair, Jeff Nielsen. Mark Brock is Chair of Grain Farmers of Ontario and an active corn, soybean, and wheat farmer. Jeff Nielsen is President of Grain Growers of Canada and grows canola, wheat and barley in Central Alberta.

Additionally, the AgGrowth Coalition is undertaking an independent research and policy process – it is the expectation that this will be done in partnership with FPT governments.

"Modern farming is a smart global business supporting strong communities across the country with sustainable practices. It's time to modernize our agriculture programs, reflect the risks that are part of this reality and support the opportunities in front of us," says Mark Brock, Chair of AgGrowth. "This is a rare opportunity to improve agriculture policy and programs to enhance the economic, environmental, and social contributions of farming in Canada."

In cooperation with the Canadian Cattlemen's Association and the Canadian Pork Council, AgGrowth is committed to undertake research and policy development to actively support the BRM review process.

"The AgGrowth coalition has created an industry business risk management committee to conduct research and analysis, develop policy positions and ultimately present options for improvement from a farmer perspective," said vice-Chair Jeff Nielsen. "We would like to do this in partnership with government."
Published in Corporate News
Crowds, new ideas, research and equipment – something’s going on with cover crops in Ontario.
Published in Other Crops
Wood scientist Solace Sam-Brew envisions a future where Canadian homes are furnished with products from flax and hemp.

“Both flax and hemp are widely available in Canada, especially in the West,” said Sam-Brew, a recent PhD graduate from the University of British Columbia’s faculty of forestry. “It’s worth considering their viability as alternative raw materials to wood for particleboard production.”

Particleboards are used in products like countertops, shelves and flat-packed furniture. For her PhD, supervised by professor Gregory Smith, Sam-Brew evaluated the characteristics of flax and hemp residues. She determined their physical and mechanical board properties by soaking and breaking hundreds of particleboards to test their strength and durability.

While Sam-Brew found flax and hemp residues were technically better, she hit one snag. The current economics of manufacturing flax and hemp particleboards in Canada are too high for it to flourish as a competitive material.

“The resin, or glue, needed to produce flax and hemp particleboard is a financial barrier,” she said. Resin holds the particles in the board together and flax and hemp products use expensive resin, called pMDI, as the substitute for cheap urea-formaldehyde.

Sam-Brew was able to show in her PhD research that the amount of resin needed for flax and hemp particleboards could be reduced, which would help lower the cost. Substituting lignin, a plant binder, for a portion of the pMDI resin, could also reduce the cost.

According to Sam-Brew, a burgeoning niche market for flax and hemp particleboards exists in Europe. Decades of flax and hemp processing there and the number of companies in business have led to more competitive pricing.

Sam-Brew said the business case for a similar industry in Canada lies in a facility willing to take a chance on the sustainable alternative considering the growing competition for wood residue. Wood residue is wood waste from sawmills and joinery manufacturers, like wood chips, shavings, sawdust and trims, all highly sought after for use by multiple industries, including biofuel, pellet, pulp and paper.

“They’re all fighting over one resource, which can sometimes be in short supply,” said Sam-Brew. “If a company has to travel long distances to collect the wood waste they need to make their products, that costs them money. The particleboard industry could benefit from using non-wood resources if the price is right.”

For now, flax and hemp particleboard production is at a standstill in Canada. But Sam-Brew remains optimistic.

“Flax and hemp particleboards are lighter than wood,” she said. “The downstream impacts of making a lighter product could mean faster production rates and significant energy and transportation savings.”

“The economics don’t look good now, but they could later.”
Published in Corporate News
Gui DeSouza, an associate professor of electrical engineering and computer science at the University of Missouri, and colleagues and students in his Vision-Guided and Intelligent Robotics (ViGIR) Laboratory partnered with researchers such as Felix Fritschi, an associate professor of plant sciences in the College of Agriculture, Food and Natural Resources (CAFNR) and Todd Mockler, a principal investigator with the Danforth Plant Science Center to study the effects of climate change on crops in Missouri. Using principles developed in the ViGIR lab, DeSouza is changing the way agriculturists collect data in the field.

“I’ve been working with CAFNR assisting them in experiments where we helped to create 3-D images of root growth in the laboratory,” DeSouza said. “Now, we’re creating robotics to assist in creating images of corn shoot growth out in the field.”

The engineering and plant science research team developed a combination, two-pronged approach using a mobile sensing tower as well as a robot vehicle equipped with three levels of sensors. The tower inspects a 60-foot radius of a given field to identify areas affected by environmental stresses, while the vehicle collects data on individual plants. The sensors have the ability to measure various heights of the corn plant in order to reconstruct the 3-D image.

“Measurements taken from the tower alert us if any of the plants are under stress, such as heat or drought,” DeSouza said. “The tower then signals the mobile robot, which we call the Vinobot, to go to a particular area of the field and perform data collection on the individual plants. The Vinobot has three sets of sensors and a robotic arm to collect temperature, humidity and light intensity at three different heights on the corn plant. This is called plant phenotyping, which assesses growth, development, yield and items such as tolerance and resistance to environmental stressors by correlating these to physiology and shape of the plants.”

While the tower covers only a relatively small area, it can easily be moved to cover an entire field. This cost-effective measure means it is less expensive to have more towers, stationed at various points in the field, operating simultaneously.

“The towers not only are inexpensive, they also are available throughout the day and night and can generate more data than any aerial vehicle could,” DeSouza said.

The team’s study, “Vinobot and Vinoculer: Two robotic platforms for high-throughput field phenotyping,” recently was published in Sensors.
Published in Corporate News
The pace of progress can be astonishing when we slow down enough to reflect on where we’ve been, where we are, and where we’re going. Take, for instance, the rapid technological changes each of us has lived through. I have vague childhood memories of introducing my aunt to the wonders of Pac-Man on my family’s state-of-the-art Commodore 64. Fast-forward 20-odd years and I was introducing her to the much smaller, much more powerful iPad mini. Just think what I might be introducing her to in another 20 years. Our wildest imaginings will probably fall short of what two decades of innovation will accomplish.
Published in Corporate News
Researchers at Oxford University and Rothamsted Research have developed a new plant application that harnesses the power of sucrose in wheat to produce more grains. A synthetic molecule solution is sprayed on plants, resulting in an increase in wheat grain size and yied of up to 20 per cent. There is also reason to believe the solution could help wheat plants recover from drought. |READ MORE
Published in Corporate News

Researchers at the University of Missouri have determined the mechanisms corn plants use to combat the western corn rootworm.

Published in Corn
Are AgBots the way of the future for agriculture in Canada, or simply the latest in a long line of products marketed as must-haves for Canadian producers?

Long used in the dairy industry for autonomous milking and herding, robotics technology is being applied in soil testing, data collection, fertilizer and pesticide application and many other areas of crop production.

“Robotics and automation can play a significant role in society meeting 2050 agricultural production needs,” argues the Institute of Electrical and Electronics Engineers’ Robotics and Automation Society on its website.  

Farmers have a right to question the value of new technologies promising greater efficiency on the farm. But Paul Rocco, president of Ottawa-based Provectus Robotics Solutions, believes robotics offer a suite of potential new solutions for producers short on resources and averse to risk.

“In a perfect world, farmers would have a machine that could perform soil sampling at night, deliver a report in the morning, and be sent out the following night to autonomously spray,” says Rocco. “We’re a ways away from that, but the technology is maturing and the capabilities exist already – it’s about putting it into the hands of farmers and making sure it’s affordable.”

Provectus’ latest project involved problem solving for a banana plantation in Martinique, where human ATV operators are at risk of injury from chemical spray or even death due to unsafe driving conditions. The company recently developed a remotely operated ground vehicle that carries spray equipment and can be controlled by operators in a safe location.

“We see applications in Canada,” says Rocco. “Why expose people to hazardous substances and conditions when you can have an unmanned system?”

Robotics are not all bananas. For example, a Minneapolis-based company, Rowbot Systems, has developed an unmanned, self-driving, multi-use platform that can travel between corn rows – hence, “Rowbots” – to deliver fertilizer, seed cover crops, and collect data.

RowBots are not yet commercially available, but CEO Kent Cavender-Bares says there’s already been interest from corn growers across the United States as well as Canada.

As to whether the use of robotics is cost-effective for farmers, it’s almost too soon to say. But utility can be balanced against cost.

“In terms of cost effectiveness from the farmer’s perspective, there’s a strong story already for driving yields higher while reducing production costs per bushel. Of course, we need to bring down the cost on our side to deliver services while making a profit,” says Cavender-Bares.

He believes that as autonomy spreads within agriculture, there will be a trend toward smaller, robotic machines.

“Not only will smaller machines be safer, but they’ll also compact soil less and enable more precision and greater diversity of crops,” he says.

Case study: ‘BinBots’
Closer to home, a group of University of Saskatchewan engineering students has designed a “BinBot,” an autonomous sensor built to crawl through grain bins and deliver moisture and temperature readings.

The students were part of a 2015 Capstone 495 design course, in which groups of four students are matched with industry sponsors to tackle specific problems.
Joy Agnew, a project manager with the Prairie Agricultural Machinery Institute (PAMI)’s Agricultural Research Services, stepped forward with a challenge: could students develop an improved grain bin sensor for PAMI?

“It came about from the first summer storage of canola project we did, and the data showing that in the grain at the top of the bin, the temperature stayed steady during the entire sampling period, but the temperature in the headspace grain was fluctuating wildly,” says Agnew.

“We realized the power of grain insulating capacity – there was less than 15 centimetres between the grain that was changing and the grain that wasn’t. That made us think: the sensors are really only telling you the conditions in a one-foot radius around the sensor – less than one per cent of all the grain in the bin.”

The problem she set to the students: can you design sensors with “higher resolution” sensing capabilities than currently available cables?

“We were looking at some high-tech ideas of how we could do that with radio waves or imaging, and we thought we needed more mechanical systems,” says Luke McCreary, who has since graduated. “We ended up with a track system in the bin roof with a robot on a cable. The robot has a couple of augers on it so it can propel itself through the grain, taking temperature and humidity measurements as it goes and sending that data to a logging source to create a 3D map of the temperature, humidity and moisture in the bin,” he says.

Once built, the robot will be six inches in diameter and 14 inches long, with the ability to move laterally, vertically and transversally.

Agnew says PAMI is applying for funding to build the robot, and has already had some interest from manufacturers. She says the technology could reach farmers’ bins between five and 10 years from now.

“We think this is the way of the future to avoid the risk of spoilage,” she says. “The technology is advancing, and costs are declining rapidly.”
Published in Maintenance
August 9, 2016 - Farmers in Northern Ontario have a short growing season. There’s little room for error, and every bit of data helps. That’s why for the past seven years, a research team has built a tool that gives both real-time and historic information that helps growers make more informed crop management decisions.

The project, called GeoVisage, is the brainchild of three Nipissing University researchers – geographers Dan Walters and John Kovacs, and computer scientist Mark Wachowiak. The team says the project was born from a request from area farmers to collect data that could be shared with farmers in a timely way on their own farms.

“Initially the idea was to collect quality information that could be shared among Northern Ontario farmers without requiring them to meet in person all the time,” says Kovacs. “Our area saw a shift from cattle to cash crops about ten years ago, and farmers needed enough data to decide what different types of cash crops made sense to grow.”

Farmers typically relied on inadequate data from weather stations at regional airports, which can be up to a hundred kilometres from farms, and located on escarpments, rather than the clay belt, where crops grow. Over the past seven years, Walters and Kovacs have installed a series of weather stations on farms throughout the region. Some units update key data points every hour, while newer stations provide real-time updates, accessible through the GeoVisage system by computer or other device. The team also incorporates satellite imagery and drone technology for aerial views of fields at different times throughout the season.

“It took some conversations with local farmers to realize what they were using the information for, and what changes they wanted to see on the user interface,” says Kovacs. “We learned soil temperature is important for seeding, wind speed is important for making spraying decisions. Heat availability can help with assessing new opportunities, like growing corn under plastic.”

Kovacs notes drone technology proved useful in helping one producer measure the distance between tile drainage runs in a newly-acquired property, and another producer used aerial images to investigate the extent of crop damage caused by crop pests such as army worms. “Having farmers involved in collecting and using the data has been important for this project,” says Walters. “We’ve partnered with producers associations and government on different projects, and it’s been a valuable learning experience for our students and faculty.”

The data is available at no cost to producers in the region, and it serves as an important source of information for students and researchers across Canada. The project received funding from the Northern Ontario Heritage Fund Corporation and in-kind support from Agriculture and Agri-Food Canada. For more information visit http://geovisage.nipissingu.ca
Published in Corporate News
August 10, 2016 – A University of British Columbia professor’s flax research could one day help Canadian farmers grow a car fender.

In a recent study, UBC researcher Michael Deyholos identified the genes responsible for the bane of many Canadian flax farmers’ existence: the fibres in the plant's stem.

“These findings have allowed us to zero in the genetic profile of the toughest part of this plant and may one day help us engineer some of that toughness out,” says Deyholos, a biology professor at UBC's Okanagan campus. “With further research, we might one day be able to help farmers make money off a waste material that wreaks havoc on farm equipment and costs hundreds of hours and thousands of dollars to deal with.”

As part of his research, Deyholos and his former graduate student at the University of Alberta dissected thousands of the plant’s stem under a microscope in order to identify which genes in the plant's make up were responsible for the growth of the stem, and which weren’t.

Due to the length of the Canadian prairie’s growing season, where flax is grown, farmers typically burn the stems, known as flax straw, as opposed to harvesting the material. In many European countries, flax straw is used as an additive in paper, plastics and other advanced materials such as those used in the production of automobiles.

Currently, Canadian flax is used only for the value of its seeds, which can be eaten or broken down into flaxseed oil. Flaxseed oil is used in the manufacturing of paints, linoleum, and as a key element in the manufacturing of packaging materials and plastics.

According to the Flax Council of Canada, Canada is one of the largest flax producers in the world with the nation’s prairie provinces cultivating 816,000 tonnes of the plant in 2014/15 on 1.6 million acres of land. Deyholos’ research was recently published in the journal Frontiers of Plant Science.
Published in Corporate News
July 26, 2016 - The Agricultural Institute of Canada (AIC) has released its 2016 Conference Report summarizing the need for the agricultural sector to better disseminate research results to producers, farmers, industry, academia, consumers and among the research community. A number of findings and recommendations are included in the report.

One key finding is that research dissemination has often been neglected in past policy development or is left until the end of the project cycle, which needs to change in order to increase stakeholder engagement and allow for greater impact of results. Another is that the sector needs to find new ways to incent and support knowledge transfer activities.

“Last year, we broke new ground by releasing Canada’s first-ever agricultural research policy, a long-standing objective for the sector and for AIC," said Serge Buy, CEO of AIC. "This year, we are continuing our work by raising awareness of the need to better communicate and disseminate agricultural research. We need to collectively ensure that game-changing results have the impact that they deserve in Canada and internationally.”

The report also discusses the role intellectual property (IP) has to play in the dissemination of research outcomes. Although the commercialization of research results can certainly lead to a positive rate of return on investment, IP management is often debated or misunderstood and not recognized as a potential dissemination route for Canadian innovations.

The report focuses on three key themes:

  • Dissemination strategies and participation channels for agricultural research
  • Knowledge transfer (KT) and extension
  • IP protection, co-operation and collaboration
The report is a summary of the input gathered in policy discussions with researchers, government officials and other industry stakeholders at the annual AIC Conference that took place in April.

A subsequent, in-depth Best Practices Report for Research Dissemination highlighting a number of best practices from across the sector will be released by AIC later this summer.

To view the 2016 Conference Report click here.

Highlights of the report

“A scientific breakthrough that could dramatically change how farmers harvest, or manufacturers prepare a certain product, is discovered in a lab. How do we get this vital information from the research to benefit the end user?” – Theme 1, Page 8

“…farming has become an increasingly complex undertaking. The sector must find ways to unpack the complexity and tell stories in clear, uncomplicated ways to deliver strong, but accurate messages using adequate channels.” – Theme 1, Page 10

“The inclusion of funding for KT and extension activities in the next Federal-Provincial-Territorial Policy Framework… and enhanced collaboration across the sector can enable the environment needed to implement new participatory research methods and enable effective knowledge transfer.” – Theme 2, Page 15

“Intellectual property rights (IPR) affect nearly every part of the research process from initial development to the sharing of results with other researchers. It is also an area of great debate and misunderstanding not only in agricultural research but also in other areas of scientific research.” – Theme 3, Page 19

“Stronger IP agreements and partnerships can also help Canadian agricultural research achieve a competitive advantage at the international level.” – Theme 3, Page 20
Published in Corporate News
July 15, 2016 - Helping your co-workers too often can lead to mental and emotional exhaustion and hurt your job performance, a new study suggests.

Reporting in the Journal of Applied Psychology, Michigan State University’s Russell Johnson and colleagues say the depletion effects were especially strong for employees with high “pro-social motivation” – or those who care deeply about the welfare of others.

While previous research on helping has focused largely on the effects of the beneficiaries, this is one of the first studies to focus on the helpers.

“Helping co-workers can be draining for the helpers, especially for employees who help a lot,” said Johnson, associate professor of management. “Somewhat ironically, the draining effects of helping are worse for employees who have high pro-social motivation. When these folks are asked for help, they feel a strong obligation to provide help, which can be especially taxing.”

Sixty-eight employees in a variety of industries, including finance, engineering and health care, participated in the study by filling out surveys in the morning and afternoon for 15 consecutive workdays. The surveys measured depletion using a previously established scientific scale and helping through another scale that asks questions such as “Today, I went out of my way to help co-workers who asked for my help with work-related problems.”

The findings suggest employees should exercise caution when agreeing to help because helping may leave them depleted and less effective at work. On days when employees find themselves engaging in unusually high amounts of helping, they can attempt to bolster their energy by the strategic use of breaks, naps and stimulants like caffeine.

Help-seekers, on the other hand, should realize that asking for help, especially multiples times a day, has detrimental effects on the employees who are helping.

“This is not to say that co-workers should avoid seeking help, but that they ought to consider the magnitude and solvability of the issue before doing so and avoid continually seeking help from the same person,” the study says.

On the bright side, when helpers are thanked or made aware of the positive results of their actions, this can minimize and may even reverse the effects of depletion. “Thus, help-seekers can reduce the burden they place on helpers by clearly expressing the positive impact that helping had on them,” the study states.

Johnson’s co-authors are University of Florida researchers Mo Wang and Klodiana Lanaj, who earned a doctorate degree in business administration from MSU.

Johnson’s other research has looked at how bosses’ ethical behavior can break bad, workplace negativity can hurt productivity and nighttime smartphone use can zap workers’ energy.
Published in Corporate News
July 13, 2016 - Canadian producers recognize the importance of public perception and see themselves playing a lead role in sharing information about their operations and practices to maintain their social license to operate, according to a recent Farm Credit Canada Vision panel survey.

FCC’s Producer Perspectives on Social License survey shows more than two thirds (68 per cent) of producers who responded to the survey believe public perception will have a growing impact on their operation over the next five years. Three quarters (72 per cent) of respondents also indicated they are comfortable sharing information about their operation practices in order to strengthen public trust and maintain their social license to operate.

“The good news is that most producers are aware of the potential impact public perception can have on their operations and are willing to share information about their practices with anyone interested in learning more about how food is produced,” says Marty Seymour, FCC director of industry and stakeholder relations. “Canada’s agriculture sector produces among the safest, highest-quality food in the world and it’s done in a socially responsible manner. The industry and individual producers take seriously their social license to operate, which is earned by maintaining public trust and confidence in what is produced and how it’s produced"

The survey found that almost half (46 per cent) of respondents have concerns about social license and their top concern (80 per cent) is new regulations that could result from public demands.

While most producers want to share information and talk about their agricultural practices, a recent survey by the new Canadian Centre for Food Integrity indicated most consumers are willing to listen and interested in learning about where their food comes from and how it is grown.

The Canadian CFI Public Trust Survey, released on May 31, showed 93 per cent of consumers know little or nothing about Canadian farming practices, and a majority (60 per cent) of those respondents indicated they want to know more about farming practices.

The same survey indicated farmers are viewed the most favourably – ahead of medical professionals, scientific researchers and government officials – in providing information about food and food production.According to the FCC survey, 82 per cent of respondents are motivated to share information with the public to help them better understand agricultural practices. The survey also showed 85 per cent of producers already share information with others beyond fellow producers and operators, 34 per cent host tours of their operations and 31 per cent respond to public comments and photos on social media.

Seymour says the industry-led initiative – Agriculture More Than Ever – is encouraging producers to connect with consumers to develop a better understanding of agriculture practices in Canada. Launched more than four years ago, it has attracted over 470 partner organizations and 2,300 individuals committed to creating positive perceptions of agriculture.

The Social License Vision panel survey was conducted from April 28 to May 3, 2016, generated 2,739 responses, a response rate of 63 per cent.
Published in Corporate News
June 28, 2016 - Farmers are among the most vulnerable when it comes to mental health, according to a new study from the University of Guelph.

Stress, anxiety, depression, emotional exhaustion and burnout are all higher among farmers than among other groups, early findings of the survey show.As well, Canadian farmers are more stressed than those living and working elsewhere.

Professor Andria Jones-Bitton, a professor in the Department of Population Medicine, analyzed more than 1,100 responses nationwide to an online stress and resilience survey, conducted on agricultural producers from September 2015 to this past January.

“Some of the producer comments leave little doubt about the impact their job and culture is having on them,” Jones-Bitton says. “One said, ‘We are not invincible, but we feel we must be’. Another said, ‘What makes me the most upset is that I have everything I dreamed of – love, family and a farm – and all I feel is overwhelmed, out of control and sad.’"

The survey found 45 per cent of survey respondents had high stress. Another 58 per cent were classified with varying levels of anxiety, and 35 per cent with depression.

Overall, that’s two to four times higher than farmers studied in the United Kingdom and Norway, Jones-Bitton said.

Other signs of mental health problems revealed by the survey are equally concerning, she added.For example, significant numbers of farmers had high levels of emotional exhaustion (38 per cent) and cynicism (43 per cent).And resilience, popularly believed to be a strength among producers, is lower among two-thirds of the respondents than it is among a comparative U.S. population.

Indeed, in agriculture, a stigma is associated with mental health treatment, Jones-Bitton says.

So it follows that the survey showed 40 per cent of respondents said they’d feel uneasy getting professional help “because of what people might think.”

Another 31 per cent said seeking professional help could stigmatize a person’s life. Fewer than half believe there is adequate mental health support from the industry.

At the same time, more than three-quarters of those surveyed said professional mental services can be helpful in times of struggle, and almost as many said they would seek out such help.

Jones-Bitton sees that as good news. She is building a team of producers, industry representatives, veterinarians and mental health professionals to create, deliver and evaluate a mental health literacy training program for farmers.

This program would train people to recognize and respond to mental distress, and reduce stigma around mental health issues in Ontario’s agricultural sector.“We need to do something,” she says. “Farmers want help, and we’re going to find ways for them to receive it.”

Jones-Bitton and the Ontario Veterinary College AWAR2E group – an acronym for Advancing Wellness and Resilience in Research and Education — started out studying mental health among veterinarians. The scope grew as it became clear producers also had issues.
Published in Corporate News

Ontarions are encouraged to help celebrate Local Food Week (June 6-12) with a visit to an Ontario farmers' market.  Local farmers' markets provide an opportunity to taste and enjoy the delicious food grown in Ontario and meet the many people who grow it.

Published in Corporate News

Mar. 21, 2016 - Alberta Agriculture and Forestry (AF) undertakes a number of research projects to ensure the quality and safety of land, air, and water for our food producers. Although long-term monitoring shows the overall quality of Alberta's irrigation water is good or excellent, a study is currently underway to use DNA fingerprinting techniques to determine the sources of contamination of irrigation water. While there are no current concerns, this is an opportunity to improve water quality for the future.

The Water Quality Section of AF is currently working with the Taber Irrigation District on a pilot study to understand the sources of E. coli in irrigation water. The study is funded by Growing Forward 2, a federal-provincial-territorial initiative. The District has made water quality a key part of their mandate to ensure farmers are growing the best quality crops.

Often, irrigators are required to have water quality tests completed to market their produce, and with recent changes in regulations in the United States (US), this need may increase. In the US, the Food Safety Modernization Act requires testing of water that is used to irrigate fruits and vegetables which are consumed raw. These regulations may affect Alberta producers with irrigated crops destined for export to the US.

This study will assist in identifying opportunities to continue to improve water quality, and help producers meet their food safety requirements for the global marketplace. The key item being measured in the study is E. coli. Generic E. coli are present in the intestines of most people and animals, and are excreted in feces. E. coli are therefore used to measure fecal contamination in water. The testing is complicated, as there are "naturalized" E. coli that occur in the environment and are not indicative of fecal contamination.

"Research gives us a better understanding on the amount of fecal and naturalized E. coli in irrigation water. The discovery of naturalized E. coli is very important because food safety is concerned about fecal contamination. If we find E. coli in water, we need to determine whether it is fecal or naturalized, which then determines if there is a food safety concern or not," says Andrea Kalischuk, director of water quality, AF.

"Our study in the Milk River area showed cliff swallows and cattle contaminated some of the water, but a significant proportion of naturalized E. coli was also observed" says Kalischuk. Whatever the study identifies as a source of contamination, the research team and irrigation district will need to work with producers to seek a balanced solution that supports both the agriculture industry and wildlife habitat, while meeting food safety requirements.

This is the final year of a three-year study, and a summary report will be shared with producers on AF's website in the fall of 2017.


Published in Irrigation

POGA’s executive director Shawna Mathieson (with son Andrew) says higher levels of avenanthramides could give people even more reasons to eat oats. Photo by Shawna Mathieson, POGA.

Oats have a lot of things going for them when it comes to human health, and one of those things is a group of bioactive compounds called avenanthramides. So a three-year project at the University of Saskatchewan is laying the foundation to help breeders develop oat varieties with higher avenanthramide levels.

“Oats are a very unique crop. They are a cereal crop, but they are very different from most cereal crops, such as corn, rice and wheat. First of all, oats have a high oil content, which is not usual in cereal grains. For example, rice has about two per cent oil, but oats may have up to 18 per cent. The high oil content gives high energy, which is very good for feed,” explains Xiao Qiu, a professor in the university’s department of food and bioproduct sciences who is leading the avenanthramide project.

“Second, oats contain beta-glucan, a type of water-soluble dietary fibre with important health benefits.” The health effects of beta-glucan have been examined in many studies, and the two best-documented benefits are that it lowers cholesterol, which helps reduce the risk of heart disease, and that it reduces glycemic response after a meal, which helps control or prevent diabetes.

“And third, oats have avenanthramides, a type of polyphenol. Polyphenols are a big group of compounds that have many different types of functions, but avenanthramides are a unique type of polyphenol. They have very high antioxidant activity compared with some other polyphenols, and antioxidants are good for protection against cardiovascular disease and many other things. Avenanthramides also have strong anti-skin-irritation and anti-allergic activity. As well, [some research indicates] avenanthramides have high anti-proliferative activity; cancer cells grow very fast, so these kinds of compounds could inhibit cancer growth.” Although more research needs to be done to confirm the human health benefits of consuming avenanthramides, results so far suggest they may provide a variety of important benefits such as contributing to a reduced risk of colon cancer and a reduced risk of heart disease.

Avenanthramides are found only in oats, not other cereals. In fact, the “avena” in “avenanthramide” comes from the scientific name for oats, Avena sativa. The oat plant uses avenanthramides to help defend itself against pathogens.

Qiu notes that avenanthramides are being used commercially in skin lotions, creams and other personal care products. For example, Aveeno is a company whose name comes from its use of oats and oat extracts in its personal care products. “The basic functional compounds in Aveeno’s products are avenanthramides because of their very high antioxidant and anti-irritation activity.” Also, an Alberta-based company called Ceapro extracts avenanthramides from oats and sells the extract to companies for use in such products.

Qiu’s research program investigates the biosynthesis of bioactive compounds in plants and microbes, and includes studies of oat oil, beta-glucan and avenanthramides. His current avenanthramide project started in January 2015 and is funded by Saskatchewan’s Agriculture Development Fund and the Prairie Oat Growers Association (POGA).

Qiu and his research team have already completed this project’s first objective, which was to survey avenanthramide levels in oat germplasm. “If we want to increase the avenanthramide content in oats, we have to know which germplasm samples have higher levels. If the level is high in a sample, then an oat breeder could potentially use it as a parent for crossbreeding,” he says.

The researchers obtained germplasm samples from the university’s plant sciences department and from Plant Gene Resources of Canada, the Saskatoon-based national germplasm bank. Most of the samples were oat breeding lines and cultivars from Aaron Beattie, an oat breeder at the university and long-term partner in oat research with Qiu, but they also tested some wild Avena species to get a general idea of the range in avenanthramide levels.

Analyzing samples for avenanthramides is fairly complex. Qiu explains that oats contain up to 20 different types of avenanthramides, although normally there are only three major ones, which are known as avenanthramide-A, avenanthramide-B and avenanthramide-C. So his lab tested about 30 different germplasm samples for those three avenanthramides. The tests showed quite a wide range in avenanthramide levels.

His lab is now working on the second of the project’s two objectives: to find out how avenanthramides are made in the oat plant. “To improve this trait in oat varieties, you have to know the biosynthetic pathway – how avenanthramides are synthesized biochemically in the plant, what genes control the synthesis, what kinds of enzymes are involved, and all these kind of things,” Qiu says.

He adds, “If we know the genes involved, then oat breeders can design a molecular marker for the trait.” A molecular marker is a short sequence of DNA associated with a specific trait. Breeders use these types of markers to quickly screen germplasm for the desired traits in the lab, making their breeding efforts more efficient and effective.

Qiu notes, “I’ve talked to oat breeders here, and they haven’t made avenanthramides a priority trait in their breeding programs. Right now, they are focusing on things like disease resistance and yield. But you never know how things might go in the future.”

From superfood to super-duper food?
Down the road, if breeders are able to develop oat varieties with higher amounts of avenanthramides, then there could potentially be benefits along the oat value chain. “With an increased amount of avenanthramides, companies could use more oats in products like lotions and creams where they want anti-itching and anti-inflammatory properties,” says Shawna Mathieson, POGA’s executive director.

“And people would have even more reasons to eat this ‘superfood.’ Oats are already recommended by many doctors because the fibre in oats helps to reduce cholesterol. Some studies have shown that individuals with high cholesterol who consume just three grams of soluble fibre every day, or about the amount in a bowl of oatmeal, can lower their cholesterol. Avenanthramides have also been linked to prevention of cardiovascular disease and to protection against colon cancer and skin irritation. So higher avenanthramide levels would make oats even better for consumers.”

As research information about the health benefits of eating avenanthramides increases and as consumers become aware of these benefits, then higher levels of avenanthramides in oats could help to increase oat consumption by health-conscious consumers. She says, “That would mean higher sales and hopefully higher profitability not only for oat producers but also for those down the oat value chain.”

Qiu thinks avenanthramides could play a valuable part in further improving the reputation of oats as a functional food. “Although oats already have a healthy image, people are only paying attention to the beta-glucan content. But oats are not just about beta-glucan; they also have avenanthramides. Right now avenanthramides are used for cosmetics, but consuming avenanthramides is also good for you. Adding avenanthramides to the good image of oats would create more demand,” he says.

“For instance, people drink red wine because of the polyphenolics, but oats have a unique group of polyphenolics with stronger antioxidant activity than wine polyphenolics. People drink tea partially because of the tannins and other polyphenolics, but oats have avenanthramides with a better activity. So why not eat more oats?”


Published in Consumer Issues

Feb. 12, 2016 - The federal government announced today it will contribute $14-million over five years to a natural products commercialization centre to be headquartered in Charlottetown, P.E.I.

The non-profit Natural Products Canada (NPC) will research, develop and market natural products and technologies in neutraceuticals, cosmetics, food, agricultural and veterinary care, and other areas.

The federal money will be matched by more than $10 million from industry and other sources for total funding of $24 million by 2021.



Published in Corporate News

The beta-glucan project results may help barley breeders and processors who want to work toward further enhancing the healthfulness of barley food products. Photo by Janet Kanters.

Research has already proven that barley beta-glucan lowers cholesterol. Now a major clinical trial has answered some previously unanswered questions about this effect. Plus it has identified improvements in gut microbes from eating beta-glucan and a possible link between a person’s genetic makeup and beta-glucan’s effectiveness. Results from the project could help advance the food barley value chain.

Beta-glucan is a type of viscous dietary fibre. “Both barley and oats are rich sources of beta-glucan. In contrast, wheat contains almost no beta-glucan, and corn and rice have none at all,” explains Nancy Ames, a food scientist with Agriculture and Agri-Food Canada (AAFC) in Winnipeg, who was the project’s principal investigator.

The health effects of consuming beta-glucan have been examined in many studies. The two best documented health benefits are cholesterol lowering, which helps reduce the risk of heart disease, and reduction of glycemic response after a meal, which helps control/prevent diabetes.

Several countries, including Canada and the United States, have approved health claims on the cholesterol-lowering effect of barley beta-glucan. According to Health Canada, consumption of at least three grams of barley beta-glucan per day helps reduce cholesterol.

Ames and her AAFC team were the ones who prepared the submission for this health claim, conducting a comprehensive analysis of all the scientifically valid studies on the topic. The claim was submitted by the Alberta Barley Commission to Health Canada in 2009 and was approved in 2012.

While preparing the submission, Ames and her team found certain gaps in the scientific information. So she and Susan Tosh of AAFC’s Guelph Food Research Centre developed a multi-year project to delve deeper into barley beta-glucan’s cholesterol-lowering effect.

“Our first interest was whether processing made a difference to the cholesterol-lowering effect. We knew that processing can sometimes affect beta-glucan’s viscosity, and we wondered: Is it possible that low versus high viscosity makes a difference in cholesterol lowering?” Ames says. “We also wanted to look at the optimal dose of beta-glucan required for health effects because there wasn’t a proper dose-effect study. So we decided to look at those together.”

The project also explored the physiological mechanism responsible for beta-glucan’s cholesterol-lowering effect; the influence of beta-glucan on gut microbes; and a possible genetic component in people’s response to beta-glucan. The project involved both barley and oats; the researchers used oats in much of the work to develop measurement methods, and they used barley for the clinical trial.

To carry out the project, Ames brought together a large, multidisciplinary team that included Tosh and several scientists from the University of Manitoba and its Richardson Centre for Functional Foods and Nutraceuticals, as well as technicians and graduate students.

A continuum of advances
The project involved a number of phases, with the progress made in each phase providing the foundation for subsequent work.

In the initial phase, the researchers used a range of processing treatments on barley to see if they could increase or decrease beta-glucan’s viscosity. They found that when normal barley is processed and prepared in normal ways, the beta-glucan has a higher viscosity than the untreated grain. Ames notes, “You always hear people say that processing is bad. But in this case, processing was good.”

The researchers also found certain techniques that reduced beta-glucan’s viscosity; those techniques are not commonly used in barley processing.

As part of doing this work, the researchers developed a faster way to measure beta-glucan’s viscosity. This method could also be used by processors to measure the beta-glucan characteristics of prototype food products, and by crop breeders to screen breeding materials.

Based on this initial work on processing and viscosity, the researchers were able to create barley foods with low and high viscosity beta-glucan for use in the clinical trial.

The trial compared the effects of four different breakfasts: a barley-based diet with three grams of high viscosity beta-glucan; a barley-based diet with three grams of low viscosity beta-glucan; a barley-based diet with five grams of low viscosity beta-glucan; and a heart-healthy wheat- and rice-based diet, as a control.

During the course of the trial, the researchers measured a number of health characteristics in the participants such as body weight, body fat distribution and blood pressure. They also collected blood and fecal samples, and analyzed the samples for various factors related to the cholesterol-lowering mechanism, gene-by-diet interactions, and gut microbes.

The clinical trial showed that viscosity definitely matters. Ames says, “Out of all the treatments, the high viscosity treatment had the greatest effect on lowering cholesterol.” Now in all their beta-glucan studies, the researchers measure not only the amount but also the viscosity of beta-glucan.

These results support the barley health claim. “Since normally processed barley foods have high viscosity beta-glucan, then health claims for the cholesterol-lowering effect of beta-glucan will be valid for the barley foods most commonly encountered by consumers,” Ames explains.

She adds, “It is easy to eat barley every day and get the amount of beta-glucan you need.”

The project also shed light on the mechanism of beta-glucan’s cholesterol-lowering effect. Through measurements of blood cholesterol and other factors, the researchers were able to identify which of several proposed mechanisms was likely to be the one responsible.

As well, they identified a possible gene-diet interaction. Although many studies have found that some individuals respond differently than others to dietary changes, this study is the first one to report a gene-related difference in response to beta-glucan. The results indicated that trial participants with a certain variant of a key gene had less of a response to beta-glucan’s cholesterol-lowering effect than participants with other variants of the gene.

That finding needs to be confirmed by further studies. If it is proven, then it would have implications for personalized nutrition. For example, potentially a doctor could simply do a blood test to see how well a patient would respond to beta-glucan as a possible treatment to lower his or her cholesterol.

The researchers were interested in the effects of beta-gluten on gut microbial populations because gut microbes are known to play a significant part in human digestion and health. The project’s results showed that consumption of the high viscosity beta-glucan meals significantly shifted gut microbe populations to a healthy pattern. This is the first clinical study to report gut microbial changes in humans due to eating beta-glucan.

The analysis showed that this microbial population shift was associated with reduction of risk factors for cardiovascular disease, such as body mass index, waist circumference and blood pressure. Ames says, “Together, our results suggest that altering gut microbiota may be playing a major role in mediating the health benefits of beta-glucan.”

“I am really excited about our findings,” notes Yanan Wang, a PhD student involved in this project. She explains that better understanding of beta-glucan’s cholesterol-lowering mechanism could provide practical benefits. “By knowing the mechanism, we can use the physiological effects of functional foods in a more effective way.”

Overall, the project has achieved important advances in understanding how beta-glucan works in the human body and how to measure key characteristics of beta-glucan. These findings are helping Ames and her colleagues in their current beta-glucan research, including several clinical trials on viscosity and one on glycemic response.

The project’s results can also help barley breeders and processors who want to work toward further enhancing the healthfulness of barley food products. As well, the findings could help raise interest among health-conscious consumers in food barley products.


Published in Consumer Issues
Page 1 of 2

Subscription Centre

New Subscription
Already a Subscriber
Customer Service
View Digital Magazine