Research
A Food Policy for Canada will set a long-term vision for the country's health, environmental, social, and economic goals related to food, while also identifying actions that can be taken in the short-term to improve Canada's food system.

Parliamentary Secretary to the Minister of Natural Resources, Kim Rudd, along with the Member of Parliament for Guelph, Lloyd Longfield, participated in a regional engagement session in Guelph, Ontario, as part of the ongoing consultations regarding the development of A Food Policy for Canada.

Stakeholders, Indigenous representatives, experts, and key policy makers were invited to join this session, part of a series being held across the country. The sessions began in August in Charlottetown and Saint-Hyacinthe, continuing in September in Vancouver, Yellowknife, and today's session in Guelph, and will conclude at the end of the month in Winnipeg.

Public consultations on A Food Policy for Canada were launched on May 29, 2017, with an online survey that asked Canadians for their input on food issues related to:
  • increasing access to affordable food;
  • improving health and food safety;
  • conserving our soil, water, and air; and
  • growing more high-quality food.
Response to the survey from across the country was strong, with more than 40,000 responses received before it closed on August 31, 2017.

"As Canadians, we know that having a reliable supply of affordable, nutritious, and safe food also depends on maintaining our country's natural resources. As a government, we must support growth and access while conserving the land. That is why I am so pleased to participate in today's A Food Policy for Canada engagement session – taking part in conversations like the one we are having today ensures that we build a Food Policy that reflects what is most important to Canadians when it comes to our food," said Kim Rudd, Parliamentary Secretary to the Minister of Natural Resources.
Published in Corporate News
Innovative research is shedding new light on grain filling in oat, including the oft-overlooked occurrence of unfilled kernels. The research has overturned some common assumptions about oat grain filling and is opening the way to faster development of higher yielding and better quality oat varieties.
Published in Plant Breeding
With a later than normal planting window and a summer growing season seemingly short on summer weather, some growers have been monitoring their corn growth stages and asking about gauging the risks associated with corn maturity and frost, particularly those who planted very late or have longer maturity hybrids. While there are still several weeks left to the growing season, a few things growers trying to gauge their crop stage for frost risk may want to consider include:

Crop Staging

Clearly, the closer to maturity (black layer) the crop is, the less impact a frost event will have on the crop. For quick review:

The emergence of silks is the R1 stage. As a rough guideline, once pollination occurs, it takes about 60 more days for the crop to reach physiological maturity. Thus, silk timing can give a bit of an indication of when maturity of the corn crop may be expected – a crop that pollinated around July 25th may be expected to reach maturity or black layer sometime around September 25th. While there can be some small differences across hybrid maturities, hybrid maturity ratings have a much more significant impact on the length of time in vegetative stages than reproductive stages.

The R2 blister stage occurs following pollination when fertilized kernels are just beginning to develop, while the R3 milk stage occurs when kernels are turning yellow and are beginning to fill with an opaque milky fluid. Grain fill is rapid by the R3 stage, and maturity under normal conditions would be 5-6 weeks away.

The R4 dough stage occurs when the milk solution turns pasty as starch continues to form, with some kernels beginning to dent as dough begins to turn to hard starch at the dent ends of kernels. Under normal conditions, the dough stage may be generally 3-5 weeks from maturity.

The R5 dent stage occurs when the majority of kernels have dented, and the milk line, which separates the hard starch phase from the soft dough phase, progresses from the dent end towards the cob. The dent stage may last approximately 3 weeks.

The R6 maturity or black layer stage marks physiological maturity. This occurs when a small layer of cells at the base of the kernel near where the kernel connects to the cob die and turn black, which marks the end of grain fill from the cob into the developing kernel. Maximum dry matter accumulation has occurred, so any frost or stress event after this stage will have little impact on yield unless harvestability is compromised. Black layer normally forms once milk line has reach the base of the kernel, although significant stress events (extended period of very cool average temperatures, significant defoliation) can result in black layer formation before the milk line has reached the base of the kernel.

Frost Severity

In regards to frost severity, a light frost (ie. 0°C) may damage or kill leaves, but not be cold enough, or last long enough to actually penetrate into the stem and kill the plant. While premature leaf death limits further grain fill from photosynthesis, a living stem can still translocate dry matter to the developing grain to continue to provide some grain fill after a light frost event.

In the event where temperatures are low enough (ie. -2°C), or last long enough to penetrate and kill the entire plant, there is no ability of the plant to continue filling grain, and yield at that point has been fixed.

Any frost event during the blister or milk stage would result in significant grain yield losses as significant grain fill is still yet to occur at these stages.

A light frost event at the dough stage may reduce yields by 35% while a killing frost may reduce yields by 55% (Lauer, 2004).

Yield loss in the dent stage depends on the relative time left to mature. A light frost at the beginning of dent stage may reduce yields by 25% while a killing frost may reduce yields by 40%. During the mid-dent stage, significant dry matter accumulation has occurred, and light and killing frosts may reduce yields around 5% and 10% respectively.

Estimating Time to Maturity

Time required to reach maturity can be estimated by knowing the approximate Crop Heat Units (CHU) required for each reproductive corn stage. A general approximation of CHU required to complete the various R growth stages in corn is presented in Table 1. Scouting corn for the crop stages described above and referring to Table 1 will give an indication of how many CHU are required for the corn crop to reach maturity.



Comparing the estimated CHU required from Table 2 to an estimated number of CHU available until typical first frost date gives an idea of how much CHU would be available in an “average” year, and how close to maturity the crop may be for the average expected first frost date. Typical first killing frost dates based on 30 year climate normal across a selection of locations in the Province are presented in Table 2, while CHU values can be estimated through calculation tables in the Field Scouting chapter of Pub 811 Agronomy Guide for Field Crops, or through other weather information providers such as Farmzone.com or WeatherCentral.ca.

This Report includes data from WIN and Environment Canada
Published in Corn
In response to the Federal Provincial and Territorial (FPT) Agricultural Ministers' commitment to a comprehensive review of Business Risk Management (BRM) programs over the coming year, several agricultural organizations have formalized their structure and plans as the AgGrowth Coalition. The Coalition has committed to advocacy efforts and policy research to position industry as a trusted, authoritative partner in this critical review process.

At a recent meeting in Toronto the Coalition discussed and agreed to a strategy for the path forward in ensuring meaningful participation of industry in the BRM review. Members committed time and resources to guarantee that agriculture has a significant voice in shaping the next generation of farming policy and programs.

To that end, the AgGrowth Coalition is pleased to announce the coalition's Chair, Mark Brock and Vice Chair, Jeff Nielsen. Mark Brock is Chair of Grain Farmers of Ontario and an active corn, soybean, and wheat farmer. Jeff Nielsen is President of Grain Growers of Canada and grows canola, wheat and barley in Central Alberta.

Additionally, the AgGrowth Coalition is undertaking an independent research and policy process – it is the expectation that this will be done in partnership with FPT governments.

"Modern farming is a smart global business supporting strong communities across the country with sustainable practices. It's time to modernize our agriculture programs, reflect the risks that are part of this reality and support the opportunities in front of us," says Mark Brock, Chair of AgGrowth. "This is a rare opportunity to improve agriculture policy and programs to enhance the economic, environmental, and social contributions of farming in Canada."

In cooperation with the Canadian Cattlemen's Association and the Canadian Pork Council, AgGrowth is committed to undertake research and policy development to actively support the BRM review process.

"The AgGrowth coalition has created an industry business risk management committee to conduct research and analysis, develop policy positions and ultimately present options for improvement from a farmer perspective," said vice-Chair Jeff Nielsen. "We would like to do this in partnership with government."
Published in Corporate News
Crowds, new ideas, research and equipment – something’s going on with cover crops in Ontario.
Published in Other Crops
When is the “right” time to put soybeans into the ground? Research in Manitoba is moving beyond the recommendations borrowed from Ontario and south of the border to develop Prairie-specific guidelines.  
Published in Seeding/Planting
This year’s “Canada 150” celebrations, marking 150 years since Confederation on July 1, 1867, have prompted reflection about the past, present and future of our country.
Published in Corporate News
While the benefits of cover crops for soil health have long been touted by extension staff, it’s been difficult for researchers to determine how exactly cover crops affect the soil. But last year, an elaborate soil health monitoring system ­– the first of its kind in North America – was installed at the Elora Research Station, near Guelph, Ont.

Prior to installation, 18 soil columns were outfitted with multiple sensors at multiple depths for sampling soil water, nutrients and greenhouse gases. The measuring devices, called lysimeters, will be used to compare the environmental impact of two different long-term cropping systems. A conventional (non-diverse) corn-soybean rotation will be compared to a diverse rotation where cover crops and intercrops are included in a corn-soybean-wheat rotation.

In addition to evaluating how cropping systems impact soil health, the project will also measure the impact of crops on soil ecosystem services.

These are the benefits to society, such as increased carbon sequestration, reduced nutrient leaching and reduced greenhouse gas emissions....

Don't forget to sign up to our E-newsletters (for free!) and subscribe to the Western edition of Top Crop Manager (print and digital) for the full story. The more you know, the better you grow.
Published in Soil
Jeff Schoenau, a soil scientist with the University of Saskatchewan was involved in a research study conducted in the mid-2000s that compared four tillage treatments that were imposed on no-till fields (longer than 10 years) at Rosthern (Black soil), Tisdale (Gray soil) and Central Butte (Brown soil), Sask.
Published in Tillage
In 2016, the research farm in Harrington, P.E.I., became the first Agriculture and Agri-Food Canada facility in the country to have part of its operation certified organic. Agriculture Canada now has 15 hectares in total certified on P.E.I.

"The 25 acres (10 hectares) in Harrington have been so successful and we had been essentially farming the Charlottetown farm as an organic farm since about 2013," said Jan Holmes, farm manager at the Charlottetown Research and Development Centre. | READ MORE
Published in Corporate News
What if we could design a landscape that would provide a variety of nutritious foods, high-quality habitat, and ecosystem services, while also delivering a healthy profit to the landowner? According to University of Illinois researchers, it is not only possible, it should be adopted more widely, now.

“We need to be on the road to figuring things out before we get to tipping points on climate change or food security, or we could be left way behind. In future environments, people might get paid for ecosystem services or carbon credits, or food might become more valuable. If so, these systems become much more attractive for landowners,” says Sarah Taylor Lovell, an agroecologist in the Department of Crop Sciences at U of I.

Lovell believes multifunctional woody polyculture is the way forward. She and several co-authors introduce the concept and discuss their experimental design in a recent paper published in Agroforestry Systems.

Essentially, the idea is to incorporate berry- and nut-bearing shrubs and trees in an alley cropping system with hay or other row crops. The combination is meant to mimic the habitat features, carbon storage, and nutrient-holding capacities of a natural system. “We wanted to capture that aspect, but we also wanted it to be commercially viable,” Lovell says. “The trees and shrubs need to fit in perfect linear rows 30 feet apart, so you can fit equipment. That was a much more practical agronomic consideration.”

Lovell and her colleagues are three years into what they hope will be a long-term experiment on the U of I campus. Their trial consists of seven combinations of species in commercial-scale plots, from simple combinations of two tree species to highly diverse combinations including multiple species of trees, shrubs, and forage crops. “We added increasingly diverse systems so we can get a sense of how much is too much diversity in terms of trying to manage everything in a feasible way,” she says.

The researchers will measure crop productivity, management strategies, and economic potential as the experiment gets established. “We’re keeping track of all the person-hours that go into each of these different combinations, so we’ll capture the labor involved and figure out whether it’s economically viable,” Lovell says.

Farmers accustomed to traditional row crops may be daunted by the long wait associated with nut crops. Lovell says chestnuts and hazelnuts don’t produce worthwhile harvests until 7 to 12 years after planting. But, she says, the other species can bring in profits while farmers wait. Hay or vegetable crops can be harvested from the alleys in year one. And shrubs could start bearing high-value fruit crops, such as currants or aronia berries, within a couple of years.

Lovell points out that the market for some nuts is growing. For example, Nutella lovers may recall headlines about an international hazelnut shortage a couple of years ago. “It would take a while to saturate that market,” she says. But she also points out that some nuts could be used more generically for their starchy or oily products.

Another barrier to adoption may be the cost of specialized equipment needed to harvest tree nuts, berries, and row crops. “There’s a tradeoff in terms of how complex to get and still be able to manage it in a reasonable way,” Lovell says. But she suggests the potential of farming cooperatives with shared equipment as a way to defray costs.

It will be several years before Lovell will have results to share, but other trials have shown that multifunctional woody polyculture could be both economically viable and environmentally beneficial. Lovell’s article details the outcomes of long-standing experimental sites in France and Missouri, but she says those two sites are the only large-scale examples in the temperate region. “That really shows just how little research there is on this so far,” she says. “We need to invest in this research now because it’s going to take so long to get to the solutions.”

The research team is working with regional farmers to replicate small- and large-scale versions of their experimental setup on-farm. Lovell knows it might take some convincing, but points out that many farmers are willing to set aside portions of their land into the Conservation Reserve Program. “If we can provide the same benefits in terms of water quality, habitat, biodiversity, and nutrient cycling as CRP but then also have this harvestable product, why wouldn’t you consider that?”
Published in Seeding/Planting
A groundbreaking new method for controlling flea beetle, the pest that causes at least $300 million in damage in North American canola every year, may hit growers’ fields early in the next decade.

RNA interference, or RNAi – a process by which RNA molecules “silence” genes targeted as threats – has already been harnessed by public and private research and development programs against several agricultural pests, including Colorado potato beetle (CPB) and corn rootworm.

According to Jim Baum, Monsanto’s insect control lead in chemistry, the use of RNAi technology against flea beetle “represents a sizable opportunity and need” for canola growers in the U.S. and Canada who have seen incomplete protection from neonicotinoid insecticides and other chemical products in recent years.

Monsanto began work on an RNAi-based product for flea beetle control several years ago, Baum says, as part of a suite of RNAi projects aimed at controlling agricultural pests, including corn rootworm and CPB.

Put simply, RNAi for flea beetle control works by “tricking” the beetle’s natural immune system to self-destruct. Beetles are fed double-stranded RNA (dsRNA) molecules that “turn down” expression of a critical gene in the flea beetle midgut, killing exposed insects within five days.

There are two possible delivery methods for RNAi-based pest control in agriculture: plants can be genetically engineered to express dsRNA in their leaves, or dsRNA can be applied externally to plants as a topical spray. Monsanto has worked with both methods; its corn rootworm product is transgenic.

But the company’s flea beetle project is currently focused on the development of a foliar insecticide that can be applied using its patented BioDirect platform.

Monsanto advanced its CPB BioDirect product to Stage 2 in 2015, and Baum says the company’s experience in RNAi for CPB control has streamlined its approach to new RNAi products.

The company has already run lab bioassays monitoring mortality in insects fed various dsRNAs, as well as seedling assays in which a set number of beetles are exposed to canola seedlings treated with dsRNA at a prescribed field rate.

Last year, Baum says, Monsanto ran successful field trials for its flea beetle RNAi project, and this year the number of trials more than doubled. (The company could not comment on the location of the field trials).

Next up, Monsanto will be analyzing effectiveness of various agronomic practices — basically, what works best in terms of rates and application timing, and how the product will work in combination with other products.

“Compared to previously approved products’ timelines, we’re being conservative with this one, recognizing that topical is a new application of the technology,” Baum says. “But if the project is successful, we’re projecting commercialization sometime on the early side of the next decade.”

Farmer and consumer outreach
Though RNAi-based insect control products won’t reach farmers’ fields for several years, they need to know what’s coming, and farmer and consumer outreach will be more important than ever for companies looking to commercialize the technology.

This is the view of Curtis Rempel, vice-president of crop production for the Canola Council of Canada.

“RNAi provides a tool or a technology that takes us outside of the traditional chemistry realm, so it has the potential for much improved environmental outcomes, but along with new technologies come a new set of regulatory and efficacy evaluations,” he says.

Just how safe is RNAi? According to Baum, RNAi has a built-in specificity that means once dsRNA is targeted to a specific insect pest, even closely related pest species are not harmed when they ingest it. “It’s hard to imagine a chemical insecticide, even Bt, that would be as specific as this RNAi product we’re talking about here,” he says.

Rempel agrees but believes farmers and consumers alike need to feel that regulators and scientists have had the opportunity to evaluate RNAi technologies in terms of environmental and societal norms.

Next year, the Canola Council hopes to include discussions around RNAi in its annual Canola Discovery Forum, and Rempel says the organization is working on developing “supporting material” to help communicate the role of RNAi in pest control to stakeholders – although he is quick to point out that communications outreach about RNAi requires the collaboration of all stakeholders.

In Rempel’s estimate, only 10 per cent of farmers are familiar with RNAi and aware of projects in the pipeline, even though they are the ones who will benefit most from its use.

But consumers shouldn’t be neglected either. After all, it’s consumers who implicitly afford farmers the “social license” to use technologies like RNAi, and they are the ones who will need to be assured of the products’ safety.

“I think we have an opportunity to do a good job of looking at the questions we’re asking, reviewing regulatory procedures and communicating these to the layperson,” Rempel says.

Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
Published in Insect Pests
Recent rounds of wet weather over the past several years may contribute to an increase in salinity appearing in some areas of the Prairies. An increase in surface and subsurface soil water may bring dissolved salts into the rooting zone in concentrations high enough to impede crop establishment and growth. Traditionally, growers have planted salt-tolerant forages on the worst of their saline lands and barley on moderately saline soils.

“Growers are looking for a salt-resistant, non-cereal grain option as an alternative to barley, which is not that economically attractive compared to a crop like canola,” says Bryan Nybo, manager of the Wheatland Conservation Area (WCA) at Swift Current, Sask.

Growers concerned with soil degradation established WCA in 1983 with a special focus on salinity. It is now one of eight Agri-Arm research sites in Saskatchewan. Over the past several years, Nybo has been speaking to growers about research and completing demonstrations on using alternative crops on saline soils. One such demonstration was a 2012 Agricultural Demonstration of Practices and Technologies (ADOPT) trial conducted by Nybo. He demonstrated the option of growing canola in saline conditions.

“This demonstration of newer canola varieties attempted to emulate in the field what has been shown in the AAFC’s Salt Testing Facility by Dr. Harold Steppuhn, where canola has shown tolerance similar to barley,” Nybo says.

The Salt Lab opened at Agriculture and Agri-Food Canada (AAFC) Swift Current in 1988, and has provided practical solutions for Prairie farmers, ranging from the development of salt-tolerant crops and varieties, to assessing crop tolerances to salinity. Steppuhn worked at the Salt Lab for almost 30 years alongside technician Ken Wall, both who are now retired from AAFC. The Salt Lab has since been converted to a service facility, accommodating the research needs and projects of scientists across AAFC’s science and technology branch as well as private industry.

Steppuhn originally found hybrid canola had similar tolerance to saline soils as barley in controlled laboratory situations. He compared Harrington barley to Hyola 401 and InVigor 2573 canola. Emergence, stand density and plant maturity all decreased as saline levels increased, but at a similar rate for all varieties. In terms of relative grain yield, the two hybrid canola varieties actually performed slightly better compared to Harrington.

Relative grain yield of hybrid canola and barley at different saline concentrations
WTCM14 steppuhnSource: Harold Steppuhn, AAFC

Researchers use arbitrary ratings set up at the U.S. Salinity Laboratory to rate soil salinity. They classified soils with electrical conductivity (ECe) (a measure used by soil test labs) between zero and two deci-Siemens per metre (dS/m) as non-saline, between two and four dS/m as slightly saline, four to eight dS/m as moderately saline and above eight dS/m as severely saline. This corresponds to an approximate rule of thumb where a grower can observe the occurrence of white surface salts that equate to the field’s ECe rating: rarely if ever seen (zero to two dS/m); infrequently seen (two to five dS/m); frequently seen (five to eight dS/m); and almost always seen (greater than eight dS/m).

Recognizing that salinity is much more variable in the field, Nybo tried to replicate the Salt Lab trial with his ADOPT program. He developed a salinity contour map of the demo area using an EM 38 ground conductivity metre to measure soil conductivity. Two InVigor hybrids (5440 LL; L150), three Roundup Ready hybrids (45H29RR; DK73-75RR; VT 500), two Clearfield hybrids (BY5525 CL; 45H75 CL), a canola quality mustard (XCEED Oasis CL) and Harrington barley were seeded in strips down the saline gradient from non-saline to relatively high saline areas.

Nybo used EM 38 measurements to provide ECe readings rated from non-saline to relatively high salinity:

<80 EC non-saline
80 to 100 low salinity
100 to 130 low to moderate
130 to 160 moderate to high
>160 relatively high salinity

“We found that hybrid canola was able to perform quite well against Harrington barley, especially the hybrid varieties DK73-75RR and BY 5525 CL,” Nybo says. “EXCEED juncea canola didn’t perform as well as barley.”

Canola establishment at increasing levels of salinity (EM 38)
WTCM14
Source: Wheatland Conservation Area. 2012

While the ADOPT demonstration was able to show similar results as the Salt Lab in this trial, Nybo admits conducting agronomic work on salinity in the field is difficult because of soil and environmental variability. Salinity can vary from slight to severe within a short distance, making replicated trials difficult. That’s why the Salt Lab is so valuable to growers.

Steppuhn also studied salinity tolerance of camelina compared to InVigor 9590 canola at the Salt Lab as part of the Canola Agronomic Research Program (CARP) project. He found camelina did not have the same tolerance to saline soils as the hybrid canola. His May 2012 final report indicated: “Overall, root-zone salinity affected both camelina and canola grain yields more than it affected seedling emergence, plant survival, seed-oil content, and oil composition. However, as salinity levels increased, the camelina was more affected than the canola in seedling emergence and early survival, plant heights, relative grain yield and oil percentages. The primary impact of this research shows a need for caution when selecting camelina for saline fields that previously produced adequate canola crops.”

Nybo says the results of these demonstrations and research trials show hybrid canola may be an option where barley has traditionally been grown on moderately saline soils. He says because canola may be harder to establish, canola seeding rates may need to be increased. However, on soils higher in salinity, he cautions against growing an annual crop.

“On high salinity soils, you would still want to grow a salt-tolerant perennial forage as the best option,” Nybo says.

Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
Published in Soil
It took a lot of work, but one young Manitoba grower and entrepreneur finally has the answers the customers of his short-line machinery business have been looking for.

Darren Faurschou has a diploma in agriculture and operates a family farm in the Edwin area, west of Portage la Prairie, Man. He also serves as president of the Faurschou Ag Center, which opened in April 2015 and retails air drills, precision planters and a line of independent corn headers that adapt to row spacing. Many customers question the benefits of planting corn with an air drill versus a planter, so last year Faurschou contracted with the University of Manitoba’s department of biosystems engineering to use his 125-acre field and his own machinery for an independent evaluation of row spacing and seeding systems for corn yield and rate of emergence.

Row spacing had four variations: 7.5-inch, 15-inch, 30-inch and paired-row (7.5-inch pairs, 30 inches on centre). Two seeders were used: a twin-row Monosem planter and a Salford 522 air drill.

There were eight treatments on the field; each treatment was repeated five times in the randomized experiment. The seeding equipment was adjusted to have a uniform two-inch seeding depth. Most plots were planted on May 8 and 9, 2016.

To produce the 15-inch and 7.5-inch plots, the planter drove over the field twice. The planter’s 7.5-inch plots were seeded on May 10 and 11, 2016, due to rain and time constraints.

Craig Heppner, a recent graduate from the University of Manitoba’s bachelor of science in biosystems engineering program took on the challenge of managing the 40 plots, recording data and processing the results as part of his undergrad thesis. Faurschou provided machinery, set up the field, supplied seed (Pioneer 7332) and was responsible for applications to protect the crop from weeds and disease.

“I went with the big field for plots because size is important,” Faurschou says. “If you’re out a point on a big plot, the impact is less. You are more accurate in your detail. Real machines – commercial equipment – do all the work in real-life scenarios. Things like dry spots and wet spots average out at the end of the day.”

To be sure the results were impartial, Faurschou asked the university to handle the data collection.

Results
Faurschou had expectations about the results, and some were proven. For instance, it’s tradition in southern Manitoba to plant corn in 30-inch rows with 7.5-inches between plants in the row. For decades, planters and harvest headers have been built for that 30-inch row spacing.

“I thought the paired-row on the [Monosem] planter would do the best overall. There’s a lot of research to show that, and it did beat the 30-inch single row,” Faurschou says.

The Monosem planter twin rows are 30 inches on centre; each seed row is four inches off centre.

But in each row-spacing comparison, the 30-inch row option had the lowest yield.

“I thought the 7.5-inch would be the best for the air drill, on the theory of narrow rows using more sunlight. What I found was, for the paired row, the 15-inch and the 7.5-inch trials almost filled the rows at the same time. The 30-inch never really did completely fill in,” he says.

Overall, the 15-inch spacing had the highest yield for both the air drill and for the planter.

“It ended up doing the best. I was really surprised by that,” Faurschou says.

Heppner’s detailed analysis, converted from metric, comes to this conclusion on corn yield: “When comparing effects of the seeders, average yield for the planter was 173 [bushels/acre] bu/ac compared to 161 bu/ac for the air drill. This translated to a 5.5 per cent difference in yield.”

“When comparing effects of spacing only, yield was found to be the highest for 15-inch plots at 173 bu/ac. The 7.5-inch plots were not statistically different than this at 168 bu/ac. The 30-inch and paired row plots were significantly lower at 162 bu/ac and 164 bu/ac, respectively.”

Heppner also notes the planter was much more uniform in seeding depth, as expected, and that the average seeding depth under the planter was about a quarter-inch shallower than under the drill. The rate of emergence for planter-placed corn also was faster.

Heppner concludes, “The planter provided more consistent seeding depth than the air drill, leading to faster speed of emergence, which induced a higher yielding crop. Also, 15-inch and 7.5-inch spacing produced higher yields than 30-inch and paired rows.

“The best-case spacing and seeder for south-central Manitoba in a year with similar environmental conditions would be a planter spaced at 15 inches.”

Answers and advice
The work required to run the 40 site trials on 125 acres was more than Faurschou expected. He estimates the time commitment was four to five times as much as he would have needed to plant and harvest a conventional field of corn.

However, now he has answers and advice based on science rather than experience and educated guesswork.

“There’s been a lot of discussion about planting corn with an air drill versus a planter. As for a replicated comparison in row spacing, with results for a planter versus air drill, I’ve never heard of that,” Faurschou says. “My theory was that there are benefits for an air drill in narrow spacing and benefits for a planter in wider row spacing, but there’s not a lot [of research] done on row spacing in corn in this part of the world.”

Now, according to Heppner, there is proven evidence that a planter will return more corn than an air drill and that row spacing returns more corn at 15 or 7.5 inches than it does at 30 inches.

Due to the explosion of soybean acres in Manitoba, many farms now have a 15-inch row crop planter in addition to an air drill. It was assumed – but not proven – that lifting every second seed run on the soybean planter would be the best practice for planting corn.

Still, many farms are equipped with only an air drill. Faurschou’s trials show that if the farm has an air drill with 7.5-inch spacing, simply putting a seed block on every second run can convert it for seeding 15-inch corn rows.

One caution with this, he notes, is that the Salford air drill used in these trials is a double-disc opener. Most air drills probably have only a single disc opener.

“With a single disc, you may not have the same depth control, so the results might be different,” he says.

After studying his results, Faurschou believes the evidence points to Manitoba corn being “happiest” on 15-inch spacing between rows and between plants. In this set of trials, that spacing allowed for the optimum use of available sunlight, moisture and nutrients and consistently produced the highest dry bushel yield.

The results give Faurschou some pretty clear-cut answers for anyone with questions about row spacing.

“For my customers, if they are going to plant corn with an air drill, I’m going to recommend 15 inches. If they’re going to buy a planter to use for corn and soybeans, I’m going to recommend that they buy a 15-inch planter for both,” he says.

There’s also an economy-of-scale factor. On 15-inch rows, Darren says the average yield advantage was 6.6 bu/ac in favour of the planter; the least difference was four bushels an acre.

Using the conservative numbers, Faurschou suggests the four-bushel yield advantage on $4 corn is almost enough to justify buying a planter if it’s time to replace or upgrade an air drill.

But, there’s more to consider.

“If you’re growing just a quarter of corn and you have an air drill that can do 15-inch spacing, that’s probably the way you should go,” he says. “If you have 1,000 acres of corn, then it would almost justify buying a planter.”

In all this, caution remains a good idea. Another trial conducted in another year and under different growing conditions might produce different results.

Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
Published in Corn
The yield potential of hybrid canola continues to push higher, begging the question of whether economic thresholds for lygus bug developed in the 1990s are still valid today. With more vigorously growing crops, higher yield and relatively high canola prices, new research has found the current economic threshold level of approximately one lygus bug per sweep to be too low.

“Economic thresholds for the early pod stage were developed in Manitoba in the mid-1990s and were based on conventional canola varieties like Westar. However, since then a number of new hybrids, including herbicide-tolerant cultivars with superior agronomic traits, have entered the market and been adopted extensively,” says Héctor Cárcamo, a research scientist with Agriculture and Agri-Food Canada (AAFC) in Lethbridge, Alta.

Cárcamo and colleagues at AAFC Lethbridge, Lacombe and Beaverlodge conducted several research studies from 2012 through 2015 to validate economic thresholds for lygus in southern and central Alberta using a hybrid cultivar. They compared the impact of lygus feeding on current hybrids of canola and a conventional cultivar, and obtained baseline information about lygus in fababeans. The research was funded by the Alberta Canola Producers Commission, Alberta Pulse Growers, Alberta Crop Industry Development Fund and AAFC’s Pest Management Centre.

A multi-site cage study was completed near Lethbridge and Lacombe to assess how lygus affects yield in canola for current cultivars and to refine thresholds. The cultivar L150 was planted at both locations. One-meter square cages (1.2 and 1.5 m tall, at Lethbridge and Lacombe, respectively) were used to confine 75 plants. The treatments included an uncaged area, and caged densities of zero, four, 10, 20, 50 (40 in Lacombe) and 80 lygus. In year two in Lacombe, an extra treatment was added in each cultivar to compare two lygus species (L. keltoni and L. lineolaris) at a density of 20 bugs per cage. At Lethbridge, the treatments included additional treatments with seedpod weevils at 10, 20 and 40 per cage, as well as a combination of 10 lygus and 10 weevils per cage, to assess the joint effects of these two insects at moderate densities below threshold.

Economic threshold increased to two to three lygus per sweep
Cárcamo says the insect additions were successful in establishing a gradient of different lygus densities, and allowed an assessment of yield impact and economic thresholds.

“The outcome of the studies suggests that the current economic threshold of one lygus per sweep at the early pod stage is too low. For Lethbridge, the data suggested that canola yield losses to warrant control did not occur until lygus reached around three lygus per sweep. For the Lacombe region, the threshold was around two per sweep,” says Cárcamo.

A second study was conducted at AAFC Beaverlodge from 2012 to 2015 to look at damage and yield comparisons in three canola varieties from bolting to maturity. InVigor and Roundup Ready hybrids were compared to Westar. Lygus adults were collected by sweep-net from local alfalfa fields and sorted by species. The dominant species of lygus was then used to stock cages at the late rosette stage with 20 adults.

The results for Beaverlodge were less conclusive, but a comparable impact of lygus on canola was observed and a similar threshold could be applied for Lacombe. More site-year data are needed to relate weather to lygus damage, but for Lethbridge, the highest number of lygus per cage (more than 1,000) and extreme yield loss (40 per cent) occurred in July 2012, when temperatures were hot (mean of 20 C) and dry (lowest rainfall relative to other years). In a normal year with sufficient rain – meaning a normal mean temperature below 20 C in July and greater than 120 millimeters of rain in June and July – lygus bugs at low populations of one per sweep did not pose a yield risk.

Cárcamo explains that in a field situation, the yield loss could also be lower because lygus in open fields are subjected to higher predation by natural enemies and also suffer more disturbances from rain and wind, unlike the situation in a cage. This means the estimates of lygus bug damage could be exaggerated and the thresholds could be even higher. Another four-year study funded by the Canola Council of Canada’s Canola Agronomic Research Program (CARP) is underway across the three Prairie provinces to attempt to validate these thresholds in actual commercial canola fields.

Cárcamo says using a higher threshold, even if only slightly higher, may result in a large reduction in pesticide use in canola crops and produce significant cost savings for canola growers. Such a reduction may have other positive repercussions, such as increased activity by pollinators and other natural enemies, which provide beneficial ecosystem services.

“On the other hand, if lygus reach or surpass three per sweep in the south, there are significant economic returns to be realized by spraying because our results, despite high local variability, showed that lygus can reduce canola yield by about 15 per cent in most years in southern Alberta and up to 20 per cent in central Alberta,” Cárcamo says.

Fababean thresholds also evaluated
In fababean there are concerns that lygus feeding can increase necrotic spots, reducing quality and marketability in addition to potential yield. At AAFC Lacombe and Vuaxhall, both in Alberta, a study was conducted to assess the species and crop damage that occurs on fababean from lygus bug feeding. In Lacombe, two to 10 fields of tannin cultivars and six to 11 fields of zero tannin fababeans were surveyed from 2013 through 2015 with sweep nets at the bud, flower and pod stages. In total, 43 fields were sampled. Lygus were identified by species and nymphal stage and total numbers were recorded.

Field and plot studies showed a similar species composition of lygus and activity pattern compared to canola. In most fields, lygus were present at less than one per sweep and rarely two or more per sweep at any crop stage. Cárcamo says further studies are needed to make management recommendations, but as a guideline, farmers may take control action if there are more than two lygus per sweep. He adds farmers should attempt to mitigate any impacts on pollinators and natural enemies of lygus.

“Fababean requires pollinators to improve yield, so it is crucial to mitigate insecticide impacts on them or the action could also affect yields negatively,” Cárcamo says. “Planting early is recommended to avoid the peak of damaging lygus populations that occur late in the growing season.”

Top tip: Sweep net sampling for lygus bug
Take 10 180-degree sweeps with a standard insect net measuring 38 centimeters (15 inches) in diameter, and aim to sweep the canola buds, flowers and pods while moving forward. Count the number of lygus in the net. Sampling several locations in the field and taking more sweeps will provide a better assessment of pest populations. Samples can be taken along or near the field margins. Sample the crop for lygus bugs on a sunny day when the temperature is above 20 C and the crop canopy is dry.

Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
Published in Insect Pests
Like it or not (and believe in climate change or not), Canada has committed to greenhouse gas emission (GHG) reductions, and the implementation will affect farmers. Part of GHG mitigation will certainly revolve around reducing nitrogen (N) fertilizer losses.

“Farmers already have production challenges with growing crops, and this will add another layer of complexity...We don’t know yet how it is going to impact at the farm level,” says Mario Tenuta, a soil scientist at the University of Manitoba.

Tenuta says agriculture is a significant contributor to greenhouse gas emissions, and nitrous oxide is the big one for agriculture. The increase in agricultural emissions in Canada is largely related to an increase in nitrogen (N) fertilizer use. In Canada, N fertilizer use has risen five-fold since 1970. In 2009, agriculture in Manitoba, for example, was responsible for 35 per cent of total GHG emissions (excluding fuel and fertilizer production). Fifty per cent of nitrous oxide emissions came from fertilizer and crop residue, and another 27 per cent came from indirect emissions from the soil.

In December 2015, the Manitoba government committed to reduce emissions from 2005 levels by one-third by 2030 and one-half by 2050. The province is committed to being emission neutral by 2080.

“Nobody likes to be a target, but we are. It is happening so what are we going to do about it?” Tenuta says.

4Rs and enhanced efficiency fertilizers
The “4R” nutrient stewardship program focuses on getting the best nutrient use efficiency by using the right source, rate, time of application, and placement of fertilizer. It aims to improve or maintain yield and profitability, while limiting fertilizer loss and providing water and air quality benefits. From a GHG emissions perspective, Tenuta says financial incentives could be used to encourage implementation of the 4Rs to reduce emissions. In 2015 at the Manitoba Agronomist Conference he reviewed current research and outlined how using the 4Rs could reduce GHG emissions.

Two research projects in Manitoba showed how increasing the N fertilizer rate also increased nitrous oxide emissions. In a Carberry, Man., potato crop, nitrous oxide emissions increased linearly as the N rate increased from zero to 240 pounds per acre. The economic rate was about 60 pounds per acre. In another trial in Glenlea, Man., a similar increase in emissions occurred as N rates increased.

“The simple way to reduce emissions was to match application rate to crop uptake,” Tenuta says.

Crop rotation also affected emissions. Nitrogen fixing legumes such as fababean, alfalfa or soybean had little to no nitrous oxide emissions and were fixing N into the cropping system instead of emitting N. Other rate considerations to potentially reduce emissions include using variable rate N, soil testing every year, and better understanding differences in variety and hybrid N requirements.

The second of the 4Rs, placement of fertilizer, also has an impact on emissions. Subsurface banding N fertilizer reduces nitrous oxide emissions, and when enhanced efficiency fertilizers such as environmentally smart nitrogen (ESN) or SuperU fertilizers are banded, reductions are even greater, at 26 per cent less than banded urea.

“Good band closure and coverage of the band is important. We are also looking into band depth, because we are banding more shallow with crops like canola, and we don’t know enough about losses from shallow bands,” Tenuta says.

Another key component of the 4Rs is application timing. Traditional yield estimates based on N application timing showed fall broadcast/incorporated to be 80 per cent of spring broadcast/incorporated, while fall banded was equal to spring broadcast/incorporated, and spring banded was 20 per cent better. However, Tenuta has found very late fall application just before freeze-up doesn’t increase nitrous oxide emissions when compared to spring banded N. Two years of his research comparing fall versus spring anhydrous ammonia application found the spring timing had much greater nitrous oxide emissions.

“Lower emissions from fall application goes contrary to what people thought might happen. Because the soil temperature was very cool, the timing used nature to stabilize the N and freeze it in,” Tenuta says.

Fertilizer source is the final of the 4Rs to take into consideration. With conventional sources of N fertilizer, scientists generally accept that anhydrous ammonia produces the highest emissions, followed by urea, ammonium and nitrate fertilizers. Nitrification – the conversion of ammonium to nitrates – is behind most nitrous oxide emissions from N fertilizer.

The other choices in sources of N fertilizer come from enhanced efficiency fertilizers (EEF). These include stabilized, controlled release, slow release and nutrient blend N products. The goal of these products is to slow the conversion of N fertilizer into forms that are more easily lost through ammonium volatilization, nitrification or denitrification, and to more closely match N availability with crop uptake.

WTCM13.5 EEF mechanismEnhanced efficiency fertilizer mechanism of action. Source: Tenuta, University of Manitoba.

“In the field, the research shows that these EEF products really do work. They tend to provide a larger benefit in wet years,” Tenuta says. “I recommend that you talk to the manufacturer representatives to make sure you are using the right product properly.”

Another source of N that reduces nitrous oxide emissions is legume plowdown as an enhanced efficiency N source. Current research at the U of M has found that, compared to conventional cropping systems with N fertilizer, a legume plowdown results in very little emission.

“You have to estimate if EEF are worth it for your system. For example, if you’re putting more N fertilizer on in the fall to compensate for winter losses, you might be able to put on a EEF in the fall at a reduced N rate and that might pay for the additional cost of the product,” Tenuta says.

He adds that uses of the 4Rs and EEF N products are currently focused on improving yield and N use efficiency for higher profitability. But they can also play a role in reducing nitrous oxide emissions and helping to meet emission reduction targets. Ultimately, if farmers are contributing to emissions reductions, the hope is that they will be compensated for those practices.

Best management practice recommendations to reduce nitrous oxide emissions
• Use the 4Rs – right rate, time, source and placement.
• Optimize N application rates through soil testing, understanding crop requirements and interactions with the other Rs.
• Consider using lower emitting sources of N fertilizer.
• Legume crops emit little nitrous oxide.
• Green manuring limits nitrous oxide emissions.
• Banding works.
• Investigate ways of making EEF products work through reduced N application rates and improved N use efficiency.
• Spring apply N fertilizer unless fall banding can be accomplished shortly before fall freeze-up.

Don't miss out on our other web exclusive content! Sign up today for our E-newsletters and get the best of research-based info on field crops delivered staight to your inbox.
In a study featured in the most recent edition of Weed Science, a team of researchers tilled four fields every two weeks during the growing season. They then monitored each site to quantify the density and species of seedlings that emerged from the weed seed bank six weeks after each till. They found that total weed density tended to be greatest when soil was tilled early in the growing season. More than 50 percent fewer weeds emerged after late-season tillage. | READ MORE
Published in Weeds
Resistant soybean varieties have helped farmers manage soybean cyst nematodes (SCN) for decades. Almost all SCN-resistant soybean varieties possess the same resistance genes, from a soybean breeding line called PI88788.

Recently, Iowa State researchers analyzed 25 years of data, from tens of thousands of four-row variety evaluation research plots, to look for long-term trends. The results, published in the scientific journal Plant Health Progress, showed a breakdown of resistance in SCN-resistant varieties. 

“This is an alarming trend and sets the stage for even greater yield loss from SCN in the future,” Gred Tylka, Iowa State University nematologist said. | READ MORE
Published in Diseases
Biochar from recycled waste may both enhance crop growth and save health costs by helping clear the air of pollutants, according to Rice University researchers.

Rice researchers in Earth science, economics and environmental engineering have determined that widespread use of biochar in agriculture could reduce health care costs, especially for those who live in urban areas close to farmland.

Biochar is ground charcoal produced from waste wood, manure or leaves. Added to soil, the porous carbon has been shown to boost crop yields, lessen the need for fertilizer and reduce pollutants by storing nitrogen that would otherwise be released to the atmosphere.

The study led by Ghasideh Pourhashem, a postdoctoral fellow at Rice’s Baker Institute for Public Policy, appears in the American Chemical Society journal Environmental Science and Technology.

Pourhashem worked with environmental engineering graduate student Quazi Rasool and postdoc Rui Zhang, Rice Earth scientist Caroline Masiello, energy economist Ken Medlock and environmental scientist Daniel Cohan to show that urban dwellers in the American Midwest and Southwest would gain the greatest benefits in air quality and health from greater use of biochar.

They said the U.S. counties that would stand to save the most in health care costs from reduced smog are Will, La Salle and Livingston counties in Illinois; San Joaquin, San Diego, Fresno and Riverside counties in California; Weld County in Colorado; Maricopa County in Arizona; and Fort Bend County in Texas.

“Our model projections show health care cost savings could be on the order of millions of dollars per year for some urban counties next to farmland,” Pourhashem said. “These results are now ready to be tested by measuring changes in air pollutants from specific agricultural regions.”

Pourhashem noted the key measurements needed are the rate of soil emission of nitric oxide (NO), which is a smog precursor, after biochar is applied to fields. Many studies have already shown that biochar reduces the emissions of a related compound, nitrous oxide, but few have measured NO.

“We know that biochar impacts the soil nitrogen cycle, and that’s how it reduces nitrous oxide,” said Masiello, a professor of Earth, environmental and planetary science. “It likely reduces NO in the same way. We think the local impact of biochar-driven NO reductions could be very important.”

The Rice team used data from three studies of NO emissions from soil in Indonesia and Zambia, Europe and China. The data revealed a wide range of NO emission curtailment — from 0 per cent to 67 per cent — depending on soil type, meteorological conditions and the chemical properties of biochar used.

Using the higher figure in their calculations, they determined that a 67 per cent reduction in NO emissions in the United States could reduce annual health impacts of agricultural air pollution by up to $660 million. Savings through the reduction of airborne particulate matter — to which NO contributes — could be 10 times larger than those from ozone reduction, they wrote.

“Agriculture rarely gets considered for air pollution control strategies,” said Cohan, an associate professor of civil and environmental engineering. “Our work shows that modest changes to farming practices can benefit the air and soil too.”

Medlock is the James A. Baker III and Susan G. Baker Fellow in Energy and Resource Economics and senior director of the Center for Energy Studies at Rice’s Baker Institute for Public Policy and lecturer of economics.

The research was supported by the NASA Air Quality Applied Sciences Team, Rice’s Shell Center for Sustainability and the Baker Institute.
Published in Corporate News
All soils are not equal. Rich loams support the world's most productive agricultural regions, including swaths of the American Midwest. But in some parts of the Midwest, including areas in Missouri and Illinois, claypan soils dominate. And where claypans reign, problems for producers abound. New research from the University of Missouri could help claypan farmers improve yields while saving costs. | READ MORE
Published in Fertilizer
Page 1 of 18

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine