Plant Genetics
Scientists working to increase soybean oil content tend to focus their efforts on genes known to impact the plant’s seeds, but a Purdue University study shows that genes affecting other plant parts deserve more attention.

Wild-type soybeans contain bloom, a powdery substance originating in the pod that can coat seeds. This trait makes the seeds less visible and is believed to be advantageous for their long-term survival in natural environments. But the bloom is enriched with allergens and can be harmful for animals and people if ingested. People domesticating soybeans selected a naturally occurring mutation that makes soybean seeds shiny through eliminating bloom. For the full story, click here
Published in Soybeans
Scientists say they have made a step forward in the fight against a wheat disease that threatens food security.

Researchers from the UK, U.S. and Australia identified genetic clues that give insights into whether a crop will succumb to stem rust.

They discovered a gene in the fungus that triggers a wheat plant's natural defences. A second pathway has been discovered which switches on a wheat plant's immune response. READ MORE
Published in Cereals
New research has identified genes that control vitamin E content in maize grain, a finding that could lead to improving the nutritional profile of this staple crop.

Cornell University scientists and colleagues from other institutions combined different types of genetic association analyses to identify 14 genes across the genome that were involved in the synthesis of vitamin E.

Six genes were newly discovered to encode proteins that contribute to a class of antioxidant compounds called tocochromanols, collectively known as vitamin E. Along with antioxidant properties, tocochromanols have been associated with good heart health in humans and proper functioning in plants. READ MORE
Published in Genetics/Traits
Two innovative research centres at the University of Saskatchewan will bolster their expertise in water security and agricultural technologies thanks to an investment of over $2.7 million from the Government of Canada.

The Global Institute for Water Security will receive more than $1.3 million to establish the Smart Water Systems Laboratory to deliver transformative technological capabilities for water-related observation and data collection. 

The Global Institute for Food Security will receive more than $1.3 million for the creation of the Omics and Precision Agriculture Laboratory (OPAL), which supports state-of-the-art precision agriculture using high-throughput digital phenotyping of crops integrated with genomics data and analysis expertise. For the full story, click here
Published in Corporate News
"If a drought occurs, you’re looking at more than 20 to 30 per cent losses in any crop. A drought-tolerant crop variety is almost like crop insurance. If you’re hit with a major drought every one out of three years, and you have drought tolerance as an added trait – along with the multiple traits in your elite canola variety – then that’s like insurance that will help protect you,” says Marcus Samuel, an associate professor at the University of Calgary.
Published in Canola
Real-time DNA sequencing, anywhere, anytime, is one step closer to making the jump from science fiction to science fact, according to researchers at the Royal Botanic Gardens, Kew. A recent paper published in Scientific Reports outlined how the team used a MinION portable DNA sequencer to analyze plant species in the field.
Published in Genetics/Traits
Australian researchers at the University of Adelaide have identified a naturally occurring wheat gene that, when turned off, eliminates self-pollination but still allows cross-pollination - opening the way for breeding high-yielding hybrid wheats.

Published in the journal Nature Communications, and in collaboration with U.S.-based plant genetics company DuPont Pioneer, the researchers say this discovery and the associated breeding technology have the potential to radically change the way wheat is bred in Australia and internationally. To read the full story, click here.
Published in Genetics/Traits
Cereal breeders continue to focus on improved yields, developing varieties that stand up to the pest and disease challenges producers face across the Prairies. Seed companies have supplied Top Crop Manager with the following information on new cereal varieties for 2018.
Published in Cereals
The area seeded to barley in Ontario has been trending downwards over the past two decades, from 325,000 acres in 1998 to only 85,000 acres in 2017. That decline has happened despite the upsurge in the province’s craft brewing industry, which prefers locally grown ingredients. So, in a three-year project, University of Guelph researchers are using several strategies to develop improved malting and feed cultivars suited to the needs of producers in Ontario.
Published in Cereals
Scientists from the International Barley Hub have discovered a genetic pathway to improved barley grain size and uniformity, a finding which may help breeders develop future varieties suited to the needs of growers and distillers.

Cereal genetics researchers working with professor Robbie Waugh and Dr. Sarah McKim, at the James Hutton Institute and the University of Dundee’s Division of Plant Sciences, published work examining the genetic control of grain formation in barley, specifically the role of a gene called VRS3. Researchers found that a mutation in this gene improved grain uniformity in six-rowed barley. To read the full story, click here.
Published in Genetics/Traits
When it comes to fighting Fusarium graminearum, our crops may soon have some new tiny but powerful allies. Research by Manish Raizada at the University of Guelph is providing the foundation for commercializing some anti-Fusarium bacteria as biocontrol products. As well, a student in his lab discovered an amazing mechanism that a bacterial strain called M6 uses to stop the fungus dead in its tracks.
Published in Diseases
Blackleg levels on the Prairies have been going up, but research information on blackleg races and cultivar resistance, plus a new cultivar labelling system and a new diagnostic test, can help bring those disease levels back down.
Published in Diseases
Researchers have discovered a way to boost the nutritional value of corn—the world’s largest commodity crop—by modifying the plant with a bacterial gene that causes it to produce methionine, a key nutrient.

The discovery could benefit millions of people in developing countries, such as in South America and Africa, who depend on corn as a staple. It could also significantly reduce worldwide animal feed costs. READ MORE
Published in Corn
A team of University of Guelph researchers at the cutting edge of discovering how plants communicate with one another has proven the stress of “seeing” weed competition causes a plant to significantly change growth patterns and drop yield.  
Published in Weeds
Not many farmers can say they’ve had a hand in early-stage selection of the very crops they’re growing in their fields, but the University of Manitoba’s Participatory Plant Breeding Program is making this possible for producers coast-to-coast.
Published in Plant Breeding
Some diet books have claimed modern wheat breeding has produced changes in wheat varieties that are causing harmful effects to human health. But University of Saskatchewan researchers have already determined that some key nutritional characteristics in wheat have actually changed very little from the varieties grown 150 years ago to today’s varieties. Now these researchers are teaming up with a University of Alberta colleague to delve into another important aspect of this issue: Have wheat gluten proteins changed over time?
Published in Plant Breeding
On Canada’s fertile Prairies, dominated by the yellows and golds of canola and wheat, summers are too short to grow corn on a major scale.

But Monsanto Co. is working to develop what it hopes will be North America’s fastest-maturing corn, allowing farmers to grow more in Western Canada and other inhospitable climates, such as Ukraine.

The seed and chemical giant projects that western Canadian corn plantings could multiply 20 times to 10 million acres by 2025 - adding some 1.1 billion bushels, or nearly 3 percent to current global production. For the full story, click here.
Published in Plant Breeding
It’s been almost 15 years since the Human Genome Project was declared complete. The publicly funded research project was established in 1990, kicking off an international effort to identify and map all of the DNA sequences in the human genome by 2005.
Published in Genetics/Traits
Dr. Anfu Hou is a leading plant breeder. He works at Agriculture and Agri-Food Canada’s Research and Development Centre in Morden, Man.

Hou was born in China and his research took him through several countries before he settled in Morden, which is located just north of the U.S. border. Geography is not insignificant here. Hou and his team develop crop varieties specifically suited to grow and grow well in the unique soil and weather conditions in Manitoba and Western Canada. For the full story, click here.
Published in Plant Breeding
Scientists at Cold Spring Harbor Laboratory (CSHL) have harnessed the still untapped power of genome editing to improve agricultural crops. Using tomato as an example, they have mobilized CRISPR/Cas9 technology to rapidly generate variants of the plant that display a broad continuum of three separate, agriculturally important traits: fruit size, branching architecture and overall plant shape.

All are major components in determining how much a plant will yield. The method is designed to work in all food, feed, and fuel crops, including the staples rice, maize, sorghum and wheat.

"Current rates of crop yield increases won't meet the planet's future agricultural demands as the human population grows," says CSHL Professor Zachary Lippman, who led the research. "One of the most severe limitations is that nature hasn't provided enough genetic variation for breeders to work with, especially for the major yield traits that can involve dozens of genes. Our lab has now used CRISPR technology to generate novel genetic variation that can accelerate crop improvement while making its outcomes more predictable."

The team's experiments, published in Cell, involve using CRISPR to make multiple cuts within three tomato genome sequences known as a promoters -- areas of DNA near associated genes which help regulate when, where, and at what level these "yield" genes are active during growth. In this way generating multiple sets of mutations within each of these regulatory regions, the scientists were able to induce a wide range of changes in each of the three targeted traits.

"What we demonstrated with each of the traits," explains Lippman, "was the ability to use CRISPR to generate new genetic and trait variation that breeders can use to tailor a plant to suit conditions. Each trait can now be controlled in the way a dimmer switch controls a light bulb."

By using CRISPR to mutate regulatory sequences -- the promoters of relevant "yield" genes rather than the genes themselves - the CSHL team finds that they can achieve a much subtler impact on quantitative traits.

Fine-tuning gene expression rather than deleting or inactivating the proteins they encode is most likely to benefit commercial agriculture because of the flexibility such genetic variation provides for improving yield traits.

"Traditional breeding involves great time and effort to adapt beneficial variants of relevant genes to the best varieties, which must continuously be improved every year," says Lippman. "Our approach can help bypass this constraint by directly generating and selecting for the most desirable variants controlling gene activity in the context of other natural mutations that benefit breeding. We can now work with the native DNA and enhance what nature has provided, which we believe can help break yield barriers."

Each of the mutated areas creates what are known as quantitative trait loci (QTL). In any given plant, QTL have arisen naturally over thousands of years, the result of spontaneous mutations that caused subtle changes in yield traits.

Searching for and exploiting QTL from nature has been an objective of plant breeders for centuries, but the most valuable QTL - those that cause subtle changes in traits - are rare. Lippman and his team have now shown that CRISPR-generated QTL can be combined with existing QTL to create "toolkits" of genetic variation that exceed what is found in nature.

The research discussed here was supported by a PEW Latin American Fellowship; a National Science Foundation Postdoctoral Research Fellowship in Biology grant (IOS- 1523423); a National Science Foundation Plant Genome Research Program grant (IOS-1732253); and a National Science Foundation Plant Genome Research Program grant (IOS-1546837).

"Engineering quantitative trait variation for crop improvement by genome editing" appears online in Cell September 14, 2017. The authors are: Daniel Rodríguez-Leal, Zachary H. Lemmon, Jarrett Man, Madelaine E. Bartlett, and Zachary B. Lippman. The paper can be viewed at: http://www.cell.com/cell/newarticles
Published in Genetics/Traits
Page 1 of 14

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Latest Events

Intercropping Innovators Workshop
Wed Jan 24, 2018 @ 8:00AM - 05:00PM
Pacific Agriculture Show
Thu Jan 25, 2018
FarmTech
Tue Jan 30, 2018 @ 8:00AM - 05:00PM