While making the rounds at industry events this winter, I noticed one topic was sure to draw a crowd every time. It seems producers, suppliers and other industry stakeholders are eager to soak up whatever information they can on international markets and trade – and with good reason.
Published in Imports/Exports
University of Copenhagen and Bayer CropScience have successfully developed a new oilseed crop that is much more resistant to heat, drought and diseases than oilseed rape. The breakthrough is so big that it will feature as cover story of the April issue of Nature Biotechnology. | READ MORE
Published in Corporate News
Glyphosate, the key ingredient in Monsanto Co's Roundup herbicide, should not be classified as a substance causing cancer, the European Chemical Agency concluded on Wednesday, potentially paving the way for its license renewal in the EU. | READ MORE
Published in Corporate News
The Canadian Agri-Food Trade Alliance (CAFTA) has released a report that outlines the potential for expanding trade in China: a market that accounted for $5.6 billion in Canadian agri-food and agri-food exports last year. China is Canada’s second-largest two-way trading partner (after the U.S.) and is projected to be the world’s largest agri-food importer by 2021.

The report, entitled “Chasing China - Expanding Canada’s Agri-Food Exports to China,” describes the growing opportunity in the country for Canada’s agri-food exports. Currently, agri-food exports to China are already significant – China demands one third of Canada’s canola exports and represents an important market for soybeans, pulses, wheat, barley, beef and pork.

Despite the large and growing demand for Canadian agri-food products in China, the report points out that Canadian exporters continue to face serious barriers that are hampering growth. For example, tariffs and non-tariff barriers reduce the range of products that can be exported and raise uncertainty for exporting businesses.

While overcoming the barriers will be tough for many agri-food commodities and value-added food products Chinese production can’t keep up with demand and there are opportunities to improve trade.

Tariff elimination and tariff quota expansion for wheat, barley, pulses, soybean, canola as well as sugar and sugar-containing products would provide opportunity for the Canadian industry. In some cases, Canada faces a significant trade imbalance with China, particularly in value-added prepared foods and is at a competitive disadvantage compared to other countries like Australia who have signed free trade agreements.

The full report can be found here.
Published in Imports/Exports
The European Union has voted to ratify the Comprehensive Economic Trade Agreement (CETA) while asking the Canadian government to address important outstanding issues.

“Getting the CETA through the European Parliament is a tremendous step forward the farm and food sector that is growing through exports – it’s good news for trade and speaks to the Canadian government’s efforts so far,” said Brian Innes, president of the Canadian Agri-Food Trade Alliance (CAFTA). “But we need to make sure that the agreement delivers on its promises. Non-tariff barriers will prevent a large part of the agri-food sector from using the agreement if they are not resolved.”

The agreement holds huge potential for growth and has been supported by CAFTA since negotiations began eight years ago. It will eliminate EU tariffs on 94 per cent of Canada’s agri- food products, and could drive additional exports of up to $1.5 billion, including $600 million in beef, $400 million in pork, $100 million in grains and oilseeds, $100 million in sugar-containing products and a further $300 million in processed foods, fruits and vegetables.

Sticking points remain, related to EU treatment of crop input products, such as biotechnology, which need to be addressed before the agreement comes into force.

In addition, CAFTA wants the government to commit to a strong advocacy strategy and a comprehensive implementation plan for agriculture and agri-food exporters that will deliver real access for Canadian companies once the trade doors are opened.
Published in Imports/Exports
A popular fertilizer for farmers is urea, a nitrogen-rich organic compound found in human urine. Urea is water soluble and volatile, which means that irrigation or a heavy rains often sweeps it away in surface run-off or it escapes as a gas before it can be absorbed by plants.
Published in Fertilizer
Researchers at Oxford University and Rothamsted Research have developed a new plant application that harnesses the power of sucrose in wheat to produce more grains. A synthetic molecule solution is sprayed on plants, resulting in an increase in wheat grain size and yied of up to 20 per cent. There is also reason to believe the solution could help wheat plants recover from drought. |READ MORE
Published in Corporate News
President-elect Donald Trump discussed agriculture very little during his campaign, but the promises he made on free trade pose significant threats to Canada’s agriculture industry, writes Helen Metella for the University of Alberta. | READ MORE
Published in Corporate News
A global ban on genetically modified crops would raise food prices and add the equivalent of nearly a billion tons of carbon dioxide to the atmosphere, a study by researchers from Purdue University shows.
Published in Consumer Issues
On Oct. 30, Prime Minister Justin Trudeau, Donald Tusk, president of the European Council, and Jean-Claude Juncker, president of the European Commission, signed the Comprehensive Economic and Trade Agreement (CETA) between the European Union (EU) and Canada.
Published in Imports/Exports
Last week Prime Minister Justin Trudeau and Chinese Premier Li Keqiang announced stable canola trade between Canada and China will continue through 2020. Under the agreement, canola trade can occur according to terms in place in August 2016, and measures to manage the risk of blackleg disease in canola will be based on science.
Published in Canola
An international research team has identified two genes which could help protect barley against powdery mildew attack.

Led by the University of Adelaide in Australia and the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) in Germany, the research will give plant-breeders new targets for developing lines of barley with resistance to powdery mildew.

The two genes, HvGsl6 and HvCslD2, were shown to be associated with accumulation of callose and cellulose respectively. These two polysaccharides play an important role in blocking the penetration of the plant cell wall by the powdery mildew fungus.

Published in two separate papers in the journal New Phytologist, the researchers showed that by "silencing" these genes, there was lower accumulation of callose and cellulose in the plant cell walls, and higher susceptibility of barley plants to the fungus. Conversely, over-expressing HvCslD2 enhanced the resistance in barley.

"Powdery mildew is a significant disease of barley wherever it is grown around the world, and resistance to the fungicide most commonly used to control it has been recently observed," said Alan Little, a senior research scientist at the University of Adelaide, with the ARC Centre of Excellence in Plant Cell Walls in the School of Agriculture, Food and Wine, in a press release.

"If we can develop barley with improved resistance to powdery mildew, it will help barley producers increase yields and maintain high quality."

In the plant and pathogen co-evolutionary battleground, host plants have evolved a wide range of defence strategies against attacking pathogens.

One of the earliest observed defence responses is the formation of cell-wall thickenings called papillae at the site of fungal infection. They physically block the fungus from penetrating the plant cells.

In barley, the papillae contain callose and cellulose as well as other polysaccharides, but the genes involved in accumulation of these carbohydrates in the cell wall have not been identified.

"Our results show that these novel genes are interesting targets for improving cell-wall penetration resistance in barley and maybe other cereals against fungal intruders," said Patrick Schweizer, head of the Pathogen-Stress Genomics Laboratory at IPK.

"Now we can use these genes to identify molecular markers for breeding enhanced resistance into modern barley."

The two papers can be read online here and here
Published in Genetics/Traits
Saskatchewan hemp growers and processors have been working to meet the exporting demand for the multi-use crop as the market expands in Europe and Asia. CBC News reports. | READ MORE
Published in Imports/Exports
German drug and farm chemical maker Bayer AG says it has agreed to acquire seed and weed-killer company Monsanto in an all-cash deal valued at $66 billion.

Bayer says it is paying Monsanto shareholders $128 per share, which represents a 44 per cent premium over Monsanto's closing price on May 9, the day before a proposed deal was announced.

The deal is subject to approval by Monsanto shareholders and anti-trust regulators. Bayer expects the deal to close by the end of 2017. | READ MORE
Published in Business & Policy

China is preparing to enact a rule as of Sept. 1 that would require the amount of extraneous plant material in canola-seed exports to make up less than one per cent of each shipment. The Chinese are a major customer for 43,000 farmers, mainly in Western Canada but also Ontario and Quebec, who export their product through grain handlers. Last year, China bought more than 40 per cent of all canola Canada sold abroad. | READ MORE

Published in Canola
June 24, 2016 - In the UK, the British people voted to exit the European Union in a historic vote which was announced in the early Friday hours. Following the vote, UK Prime Minister David Cameron said he would resign, and Scottish First Minister Nicola Sturgeon said it was “highly likely” that the SNP would seek a referendum on leaving the United Kingdom after Scotland voted strongly to “Remain”.

UK markets were roiling this morning, with the pound off more than 10% initially to its lowest point against the US dollar since 1985, while the FTSE 100 index took a huge hit in early trading before trimming losses to the 8 per cent mark. German Chancellor Angela Merkel termed the result a “terrible disappointment” and called for a meeting with the heads of the French and Italian governments on Monday to discuss next steps. | Read more.
Published in Corporate News

June 17, 2016 - It's hard to find a herbicide like glyphosate. It's cheap, highly effective, and is generally regarded as one of the safest and most environmentally benign herbicides ever discovered. But a report last year that glyphosate could cause cancer has thrown its future into jeopardy. Now the European Union faces a 30 June deadline to reapprove its use, or glyphosate will not be allowed for sale. Here's a quick explanation of the issues.

Erik Stokstad with Science magazine looks at the issue.



Published in Herbicides

Resistance is futile. Herbicide resistance is quite predictable. There is nothing mysterious about herbicide resistance. It is a simple, naturally occurring evolutionary response to selection pressure by a mortality agent, which in our case would be a herbicide.

Heap runs the International Survey of Herbicide-Resistant Weeds,, which has been online for 21 years. Scientists around the world upload documented cases of new herbicide-resistant cases. A unique case is classified as a unique species by the site of action (mode of action). For example, a case from Manitoba that has wild oat resistant to Groups 1, 2, 8, 14 and 15 would represent five unique cases.

As of April 4, there are 467 unique cases (species x site of action) of herbicide-resistant weeds globally, with 249 species (144 dicots and 105 monocots). Weeds have evolved resistance to 22 of the 25 known herbicide sites of action and to 160 different herbicides. Herbicide-resistant weeds have been reported in 86 crops in 66 countries.

Globally, there are over 1.4 million fields with confirmed herbicide resistance and approximately 11 new biotypes are discovered every year. Chronologically, the number of cases is on a steep increase. (See Fig. 1.)

The year 1946 saw the introduction of the first modern herbicides – synthetic auxins – which revolutionized weed control in cereal production. The first appearance of a well-documented case of herbicide resistance occurred in 1970. (In hindsight, there were actually several other cases, including one in Canada: wild carrot with 2,4-D resistance.) This first well-documented case was common groundsel from Olympia, Wash., where they were applying triazine (Group 5) between nursery plots. The resistance was of no economic consequence, but prompted researchers in Europe and North America to go looking in corn where triazine herbicides were relied upon for weed control, and indeed they found atrazine- and triazine-resistant weeds in the cornfields of North America and Europe.

Herbicide resistance definition
Resistance is the inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to the wild type.

There are two prerequisites for resistance evolution. First, there must be individual genes conferring resistance present in the population. There must be at least one resistant plant out there. Second, selection pressure must be exerted on those resistant individuals. Both of these factors must be present or resistance will not occur.

The original frequency of resistant individuals can vary enormously and is dependent on the herbicide as well as the weed. For some Group 2 herbicides and kochia, the original frequency may have been as high as one in 100,000 individuals; for Group 9 (glyphosate) and kochia, it may have been as low as one in 100 million. Therefore, all efforts must be focused on reducing selection pressure on resistant individuals that might be present.

Herbicides do not create resistance. If individuals of the resistant biotype are present and we repeatedly use an herbicide to which they are resistant, then we select for that biotype and the numbers build up. Herbicides have just helped select out the resistant individuals (while controlling the susceptible ones). Resistance is detected when a high proportion – usually greater than 30 per cent – of the population is resistant to the herbicide.

Weed seeds in the soil are often greater than 100 million seeds per hectare, and weed seedling populations are often greater than one million seeds per hectare. Scientific estimates suggest that depending on the herbicide group, there may be one resistant individual in 100,000 to one in 100 million. (See Fig. 2.)

  • ALS inhibitors – 1 in 100,000
  • ACCase inhibitors – 1 in 1,000,000
  • Many groups – 1 in 10,000,000
  • Auxins and glyphosate – 1 in 100,000,000

North America is leading the way with the number of cases. Western Europe, Asia, Australia and South America are all following the same trend lines. Eastern Europe is likely underreported. We know there are a lot more cases than are being reported. If we look in Asia, one thing I like to point out is that some countries are really on the rise in herbicide-resistant weeds. China, for many years, didn’t have very many herbicide-resistant weeds and they’ve had a sharp uptick in herbicide-resistant weeds recently. That’s because they have had a migration of people to the cities and they don’t have enough labour to control weeds by hand.

Wheat has the greatest number of herbicide-resistant cases, followed by corn, soybean, rice and cotton.

Factors influencing the evolution of resistance include:

  1. Initial resistance gene frequency (for the particular weed/site of action combination).
  2. Selection pressure (frequency and efficacy of herbicide use).  
  3. Number of individuals treated over time. Resistance is a numbers game. The more individuals you treat, the higher likelihood you’ll select for resistance.
  4. Residual activity of the herbicide.
  5. Genetic basis of resistance (degree of dominance of the resistance trait and the breeding system of the weed).
  6. Fitness of the resistance trait.
  7. Weed seed production. Weeds that produce more seed are more likely to become resistant.
  8. Seed dispersal mechanisms. Weeds such as horseweed spread very quickly.
  9. Seed longevity in the soil.

The reason there is so much Group 2 ALS resistance is related to the number of herbicides in that Group and the area treated, and the high numbers of which can result in resistance. There are 56 registered ALS herbicides, more than any other herbicide group, and they are used on a greater area than any other herbicide group. Group 2 herbicides (as well as Group 1 and Group 6 herbicides) are particularly prone to target site resistance (genetic mutations to the target enzyme that prevents the herbicide from binding and inactivating the enzyme).

Glyphosate resistance
North American, South American and, to some extent, Australian herbicide resistance research is focusing on glyphosate resistance. While overreliance of glyphosate in Roundup Ready crops is the main driver of glyphosate resistance, it is not the only cause, and only accounts for about one-half of resistant cases. The others are in orchards, vineyards and on fallow land.

Glyphosate-resistant crops were rapidly adopted in North and South America because they simplified weed control. Glyphosate-resistant crops saved corn/soybean farmers from ALS inhibitor (Group 2), ACCase inhibitor (Group 1) and triazine (Group 5) resistant weeds. But simply relying upon glyphosate alone to control these resistant weeds was a recipe for disaster.

The first case of glyphosate resistance was in 1996, and there are now 34 cases of glyphosate resistance worldwide. (See Fig. 3.) This is with a herbicide that is generally not prone to resistance because there are not a lot of mutations at its site of action. But just through sheer amount of usage of glyphosate, resistance develops, and it is increasing at quite a rapid rate.

Seven weed species (horseweed, Palmer amaranth, sourgrass, tall waterhemp, giant ragweed, Johnsongrass and rigid ryegrass) account for about 99 per cent of the reported area infested with glyphosate-resistant weeds.

The greatest economic impact is probably Palmer amaranth in the southern United States. Farmers are now using up to seven herbicide applications plus hand hoeing at a cost of up to $360 per hectare. Horseweed covers the largest area but is easily controlled with other herbicides. Glyphosate-resistant kochia is one that Western Canada should be worried about.

The biggest resistance challenges:

  1. Multiple resistance – starting to get resistance to two or four or even 11 different sites of action, it is very difficult to control weeds.
  2. Non-target site resistance – less predictable, very hard to identify.
  3. Decline in herbicide discovery – haven’t seen the introduction of a new mode of action for over 30 years.
  4. Overreliance on a few herbicide-resistant crops.
  5. Farmers not adopting management strategies. Many have no experience in conventional weed control methods.

Any consistent practice to control weeds year after year will result in directed evolution towards survival. In a rice paddy in the Philippines, hand-weeding barnyard grass eventually selected for barnyard grass plants that looked like rice plants. The barnyard grass was resistant to hand weeding because it looked identical to a rice plant at the time of hand weeding.

The solution is to vary weed control practices and destabilize evolution. The whole message for herbicide resistance management is to be completely inconsistent with all your weed control practices.




Published in Weeds

How can farmers preserve the herbicides they are so dependant on? Neil Harker, a weed scientist at Agriculture and Agri-Food Canada in Lacombe, Alta., suggests strategies to help slow down herbicide resistance in this week’s exclusive video from the 2016 Herbicide Resistance Summit.

May 18, 2016 - A joint FAO/WHO Meeting on Pesticide Residues (JMPR) concluded that glyphosate is unlikely to pose a carcinogenic risk to humans from exposure through the diet. The report states that glyphosate has been extensively tested for genotoxic effects using a variety of tests in a wide range of organisms.

A summary report was released on May 16, 2016, after the Joint Meeting of the Food and Agriculture Organization of the United Nations (FAO) Panel of Experts on Pesticide Residues in Food and the Environment and the World Health Organization (WHO) Core Assessment Group on Pesticide Residues held at the WHO Headquarters in Geneva, Switzerland, from May 9-13, 2016.

The overall weight of evidence indicates that administration of glyphosate and its formulation products at doses as high as 2000 mg/kg body weight by the oral route, which is the most relevant to human dietary exposure, was not associated with genotoxic effects in an overwhelming majority of studies conducted in mammals, a model considered to be appropriate for assessing genotoxic risks to humans.

Diazinon, glyphosate, and malathion were placed on the agenda by the JMPR Secretariat, based on the recommendation of the last session of JMPR to re-evaluate these compounds given the number of new studies that had become available since their last full assessments.

A copy of the full report is available for download from the WHO website.


Published in Seeding/Planting
Page 1 of 8

Subscription Centre

New Subscription
Already a Subscriber
Customer Service
View Digital Magazine

Most Popular