Field Crops
If “technology transfer tool” can be defined as a way to get information into the hands of as many people as possible, weather-based disease forecasting models are the perfect example of how this works in practice.
Published in Diseases
Cover crops long have been touted for their ability to reduce erosion, fix atmospheric nitrogen, reduce nitrogen leaching and improve soil health, but they also may play an important role in mitigating the effects of climate change on agriculture, according to a Penn State researcher.

Cover crops comparable to no-till
Climate-change mitigation and adaptation may be additional, important ecosystem services provided by cover crops, said Jason Kaye, professor of soil biogeochemistry in the College of Agricultural Sciences at Penn State. He suggested that the climate-change mitigation potential of cover crops is significant, comparable to other practices, such as no-till.

"Many people have been promoting no-till as a climate-mitigation tool, so finding that cover crops are comparable to no-till means there is another valuable tool in the toolbox for agricultural climate mitigation," he said.

In a recent issue of Agronomy for Sustainable Development, Kaye contends that cover cropping can be an adaptive management tool to maintain yields and minimize nitrogen losses as the climate warms.

Collaborating with Miguel Quemada in the Department of Agriculture Production at the Technical University of Madrid in Spain, Kaye reviewed cover-cropping initiatives in Pennsylvania and central Spain. He said that lessons learned from cover cropping in those contrasting regions show that the strategy has merit in a warming world.

Conclusions
The researchers concluded that cover-crop effects on greenhouse-gas fluxes typically mitigate warming by 100-150 grams of carbon per square meter per year, which is comparable to, and perhaps higher than, mitigation from transitioning to no-till. The key ways that cover crops mitigate climate change from greenhouse-gas fluxes are by increasing soil carbon sequestration and reducing fertilizer use after legume cover crops.

"Perhaps most significant, the surface albedo change (the proportion of energy from sunlight reflecting off of farm fields due to cover cropping) calculated for the first time in our review using case-study sites in central Spain and Pennsylvania, may mitigate 12 to 46 grams of carbon per square meter per year over a 100-year time horizon," Kaye wrote.

"Cover crop management also can enable climate-change adaptation at these case-study sites, especially through reduced vulnerability to erosion from extreme rain events, increased soil-water management options during droughts or periods of soil saturation, and retention of nitrogen mineralized due to warming," he said.

Not a primary management practice
Despite the benefits, Kaye is not necessarily advocating that cover crops be planted primarily for the purposes of climate-change mitigation or adaptation. Instead, he thinks the most important conclusion from his analysis is that there appear to be few compromises between traditional benefits of cover cropping and the benefits for climate change.

"Farmers and policymakers can expect cover cropping simultaneously to benefit soil quality, water quality and climate-change adaptation and mitigation," he wrote.

"Overall, we found very few tradeoffs between cover cropping and climate-change mitigation and adaptation, suggesting that ecosystem services that are traditionally expected from cover cropping can be promoted synergistically with services related to climate change."
Published in Corporate News
All agronomy recommendations are generalized. They can be specific to a region, but every farm is different,” says Chad Anderson, Ontario Soil and Crop Improvement Association (OSCIA) director for the St. Clair Region. “I have a lot of livestock and use a lot of manure, so my [nitrogen] rates are different than a farm that doesn’t use a lot of manure. The thing about doing your own testing is that it gets away from that generalization.”
Published in Tillage
According to panelists at the Canadian Global Crops Symposium, the Canadian soybean industry needs to improve its protein levels as well as the perception of its soybeans in the global marketplace.

“Western Canada has gone from having not optimal to better protein levels over time and we’re getting very close to the average U.S. protein,” said Jim Everson, executive director, Soy Canada. “Unless we get protein levels up, we’re likely to take discounts on international markets.” | READ MORE
Published in Soybeans
While making the rounds at industry events this winter, I noticed one topic was sure to draw a crowd every time. It seems producers, suppliers and other industry stakeholders are eager to soak up whatever information they can on international markets and trade – and with good reason.
Published in Imports/Exports
A coordinated effort to understand plant microbiomes could boost plant health and agricultural productivity, according to a new Perspective publishing March 28 in the open access journal PLOS Biology by Posy Busby of Oregon State University in Corvallis and colleagues at eight other research institutions. | READ MORE
Published in Genetics/Traits
Harvest weed seed control is a last-ditch line of defence against herbicide-resistant weeds in Australia and one many producers there would rather not have to deploy in the field.
Published in Harvesting
There was a time on the Prairies when heat and lack of moisture stress were more common than excess moisture and cool temperatures. Indeed, the movement to direct seeding and no-till was in response to droughts in the 1980s and early 2000s. Even though the last decade has seen more challenges with excess moisture than lack of moisture, for some growers the start of the growing season in 2016 was a reminder that dry conditions are never far off. With that in mind, a review of several research studies reinforces the value of surface residue on root heat stress and crop yield.
Published in Soil
Cover cropping is a promising approach to reduce some of the negative environmental impacts of production agriculture. Cover cropping also has its risks, especially if dying cover crops encourage disease pressure that passes on to the next crop. Researchers set out to describe the microbiology of dying rye cover crop roots and how their microbial communities changed over time in a field setting. What they unexpectedly discovered was the potential for elevated disease risk in corn following the use of cereal rye as a cover crop. | READ MORE
Published in Corporate News
A dry spring hindered crop growth and gave a leg up to early season insects like cutworms and flea beetles in some areas of the Prairies in 2016. Mid-season growing conditions favoured wheat midge.
Published in Insect Pests
In wheat, in canola or in pea, the message is the same: control weeds early for highest yields. Those messages have been repeated in the past and now new research highlights the need to repeat that same message with respect to wheat crops.
Published in Weeds
Largely overlooked and previously not studied a lot in Canada, weed seed predation provides the second-largest loss of weed seeds from the seed bank, second only to germination. Although research has been almost exclusively carried out in Europe and the United States, recent research at the University of Saskatchewan proves weed seed predation is occurring in western Canadian cropping systems and can be measured.
Published in Weeds
Recent discoveries by researchers at Agriculture and Agri-Food Canada (AAFC) are shedding new light on how genes are turned on and off. Switching genes on and off is critical for improving crop traits, so these research findings have exciting implications for crop advances in the future.
Published in Plant Breeding
Row spacing for various field crops on the Prairies, particularly in no-till and higher residue cropping systems, continues to be a big area of focus for researchers and growers. Understanding how wide is reasonable, what the benefits and drawbacks are and associated risks remain top priorities.
Published in Seeding/Planting
Diversified crop rotations are an important component of western Canadian cropping systems. Although crops like wheat and canola are the largest acreage crops, adding special crops into the rotation helps manage weed, disease and insect pest problems and potential resistance issues, improves soil health and maximizes profitability. However, determining which crop fits best in the cropping sequence remains a big question.
Published in Other Crops
Tree-based intercropping – growing trees together with crops – is a historical agricultural practice. These days primarily smallholder farmers use it in tropical systems, but researchers are focused on potential applications in the temperate soils of southern Ontario and Quebec.
Published in Other Crops
Send five soil test samples to five different labs and you’ll likely get five different recommendations. Understanding why will help you get the most out of your fertilizer dollars and optimize yields over the long term.
Published in Soil
New herbicide product registrations and label updates continue to bring more choice to farmers, with multiple modes of action to manage weed infestations and herbicide resistance. The following product information has been provided to Top Crop Manager by the manufacturers.
Published in Herbicides
Flash back to your first lesson in photosynthesis and you may recall stomata, the holes in the leaves of land-based plants through which they take in carbon dioxide and let out oxygen and water vapour. In the 400 million years since plants colonized the land, these holes have remained largely unchanged, save for one major exception: grasses.

Wheat field
Wheat and other edible grasses have developed pores that make them more drought tolerant. Stanford scientists have studied these pores with an eye toward future climate change.

These plants, which make up about 60 percent of the calories people consume worldwide, have a modified stoma that experts believe makes them better able to withstand drought or high temperatures. Stanford University scientists have now confirmed the increased efficiency of grass stomata and gained insight into how they develop. Their findings, reported in the March 17 issue of Science, could help us cultivate crops that can thrive in a changing climate.

“Ultimately, we have to feed people,” said Dominique Bergmann, professor of biology and senior author of the paper. “The climate is changing and, regardless of the cause, we’re still relying on plants to be able to survive whatever climate we do have.”

Adjusting an ancient system
Grasses – which include wheat, corn and rice – developed different stomata, which may have helped them spread during a prehistoric period of increased global dryness. Stomata usually have two so-called “guard cells” with a hole in the middle that opens and closes depending on how a plant needs to balance its gas exchange. If a plant needs more CO2 or wants to cool by releasing water vapour, the stomata open. If it needs to conserve water, they stay closed.

Grass stomata
The protein in yellow moves out of the guard cells into cells on both sides. By recruiting these cells, grass stomata become better suited to hot and dry environments.

Grasses improved on the original structure by recruiting two extra cells on either side of the guard cells, allowing for a little extra give when the stoma opens. They also respond more rapidly and sensitively to changes in light, temperature or humidity that happen during the day. Scientists hope that by knowing more about how grass developed this system, they may be able to create or select for edible plants that can withstand dry and hot environments, which are likely to become more prevalent as our climate changes.

“We take our food and agriculture for granted. It’s not something the ‘first world’ has to deal with, but there are still large areas of the world that suffer from famine and this will increase,” said Michael Raissig, a postdoctoral researcher in the Bergmann lab and lead author of the paper. “The human population is going to explode in the next 20 to 30 years and most of that is in the developing world. That’s also where climate change will have the biggest effect.”

Growing a better mouth
Scientists have assumed grasses’ unusual stomata make these plants more efficient “breathers.” But, spurred by curiosity and a passion for developmental biology, these researchers decided to test that theory.

Thanks to a bit of luck, they found a mutant of the wheat relative Brachypodium distachyon that had two-celled stomata. Partnering with the Berry lab at the Carnegie Institution for Science, the group compared the stomata from the mutant to the normal four-celled stomata. They not only confirmed that the four-celled version opens wider and faster but also identified which gene creates the four-celled stomata – but it wasn’t a gene they expected.

“Because it was a grass-specific cell-type, we thought it would be a grass-specific factor as well,” said Raissig, “but it’s not.”

Instead of relying on a completely new mechanism, the recruitment of the extra cells seems to be controlled by a well-studied factor which is known to switch other genes on and off. In other plants, that factor is present in guard cells, where it is involved in their development. In grasses, the team found that the factor migrated out of guard cells and directly into two surrounding cells, recruiting them to form the four-celled stomata.

Feeding the world
Over evolutionary time, humans have bred and propagated plants that produce the kinds of foods we like and that can survive extreme weather.

“We’re not consciously breeding for stomata but we’re unconsciously selecting for them,” said Bergmann, who is also a Howard Hughes Medical Institute investigator. “When we want something that’s more drought resistant, or something that can work better in higher temperatures, or something that is just able to take in carbon better, often what we are actually doing is selecting for various properties of stomata.”

The adaptability and productivity of grass makes understanding this plant family critical for human survival, the scientists said. Someday, whether through genetic modification or selective breeding, scientists might be able to use these findings to produce other plants with four-celled stomata. This could also be one of many changes – to chloroplasts or enzymes, for example – that help plants photosynthesize more efficiently to feed a growing population.
Published in Corporate News
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Published in Biomass
Page 1 of 98

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace