Equipment
Horsch is entering the North American single disc air seeder market in spring of 2019 with the Avatar SD40.
Published in Corporate News
Alberta producers who own an irrigated agricultural operation within the province are now able to apply for a program that will help them with the costs of upgrading their irrigation equipment and moving to a more efficient system.
Published in Irrigation
The PM650 Advanced Portable Grain and Seed Moisture Meter by Kett uses capacitance technology, which exists between two conductors insulated from each other and measures electric charge separated from a given electric potential.
Published in Corporate News
Hoskins Scientific introduces its HOBOnet Field Monitoring System, a tool that will allow growers to monitor field conditions from their desktop or mobile device. 
Published in Corporate News
Row-to-row variance with bulk metering systems wasn’t really on the radar until recently, because farmers couldn’t really do much about it. Recent research by the Prairie Agricultural Machinery Institute (PAMI) at Portage la Prairie, Man. identified how much variation actually exists.
Published in Precision Ag
I have had an evolution of views on herbicide resistance as it pertains to spraying. I’ve always believed that if you want to combat resistance with application technology, you need to spray less. After all, herbicide resistance is a direct consequence of relying too much on herbicide sprays.
Published in Herbicides
Manitoba Agriculture shares farm safety reminders in an effort to reduce the number of accidents during harvest season. 
Published in Harvesting
Rolling soybean fields immediately after seeding is not new. This practice has taken place in Ontario for many years to manage stones and improve harvestability. But in some years, there’s a rain or some other reason why we can’t roll right after seeding.
Published in Soybeans
Put another $8.20 per acre in your pocket with a simple adjustment. Slow down. Add an air reel and save $12.50 per acre. Those are the findings of a recent Prairie Agricultural Machinery Institute (PAMI) research project that looked at soybean header losses.  
Published in Soybeans
Research by PAMI at one site in Portage La Prairie, Man., in 2016 compared straight cut treatments of Reglone or Heat plus glyphosate, and natural ripening to swathing in 2016. Each treatment was harvested as maturity and weather conditions permitted.
Published in Canola
The thought of eliminating a pass over the field and more than $175,000 in capital equipment is tempting. Nathan Gregg, a researcher at the Prairie Agriculture Machinery Institute (PAMI) investigated whether straight-cutting canola was a viable option compared to swathing.
Published in Canola
Tramontana Agro Technologies partners up with Agrimetrix Research and Training in Saskatoon, Sask. to bring a new selective spray technology, that senses and sprays individual weeds on broad-acre scale.

The technology, WEEDit, is a system of sensors and pulse-width-modulated (PWM) spray nozzles that are capable of sensing plants and triggering a spray for those plants, and nothing else.
Published in Corporate News
The Canola Council of Canada (CCC) released a new web-based application to help producers with combine adjustments during harvest, maximize yield and edge growers closer to an average yield of 52 bu/ac by 2025.
Published in Canola
July 17, 2018 – Canadian Clean Seed Capital Group Ltd. has signed an agreement to strategically acquire U.S. planting equipment manufacturer Harvest International. 
Published in Corporate News
Presented by Breanne Tidemann, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Herbicide Resistance Summit, Feb 27-28, Saskatoon.

In order for harvest weed seed control (HWSC) to be effective, weed seeds still have to be retained on the plant at the time of harvest. If they’ve already dropped to the soil, they’re already in the seed bank. The weed seeds also need to be at a height where they can be collected by the combine. For example, chickweed is very low growing and its seeds are very low to the ground. Most producers don’t cut that low to the ground because of risk of damaging their equipment, so chickweed would not be a good candidate for harvest weed seed control.

Harvest weed seed control also means being able to get the weed into the combine. An example is a big tumbleweed, such as kochia. If the tumbleweed won’t feed into the combine and goes over top of the header, then you won’t be able to get the seeds into the combine for harvest weed seed control.

There are different methods of harvest weed seed control. Some of them have been scientifically evaluated in Australia. One of the most common methods is narrow windrow burning. The straw and chaff are dropped into windrows using metal chutes that are attached to the back of the combine. It’s cheap and easy to implement. But there are environmental impacts because it does involve burning. From a practical point of view, it may not work in western Canada, but it is used a lot in Australia.

windrower on a field at dusk
Chaff carts were originally developed in Canada. The Australians have modified Canadian chaff carts and use a conveyer system instead of a blower system to move the chaff to the cart. They’ve also adopted new technologies to make burning or collection easier and more efficient. Some of the chaff carts are programmed with GPS to dump the chaff in a certain area of the field to be grazed or burnt.

There was one Australian producer that commented he’s been using a chaff cart for 15 years, and about 10 years in he started seeing annual ryegrass that was much shorter, much lower to the ground and was dropping its seeds much earlier. So this is still a selection pressure. You will select for resistance to these methods if it’s what you’re relying on to control your populations.

chaff cart
The bale direct system bales chaff and straw directly behind the combine into a square bale. The square bales are removed from the field, taking the weed seeds with them. The loss of the residue from the field can be detrimental in terms of nutrients loss. And there is potential for transport of weed seeds in the bale from one region to another, potentially moving herbicide resistant weeds with the bale. The other issue in Australia is one producer started doing this and he saturated the entire market. The bales can also be pelletized to produce pelletized sheep feed, but again it’s a relatively small market. So market can be an issue with this methodology.

bale direct system
The Harrington Seed Destructor uses a cage mill to grind the chaff and weed seeds. The cage mill has two counter-rotating plates that spin very fast in the opposite directions. The weed seeds go in to the middle of the mill and have to move from the inside out to continue to move through the system. The straw moves along a conveyor belt and goes through a spreader at the back. Only the chaff is processed through the cage mill. The disadvantage is that the first model was towed behind the combine and required a lot of horsepower.

harrington seed destructor
The tow-behind model was always intended as step one. The Integrated Harrington Seed Destructor (iHSD) is mounted on the combine and uses the same cage mill system. The integrated model had several improvements. Instead of having the two counter-rotating plates there’s only one rotating plate and one stationary plate, but that rotating one turns twice as fast. It is a hydraulically driven machine and takes about 80 horsepowers from the combine to run this machine.

integrated harrington seed destructor
A new combine mounted seed impact implement was first announced January 2017. The Seed Terminator is competition to the Harrington Seed Destructor. It uses a slightly different type of mill called a multi-stage hammer mill, but it works on essentially the same idea of crushing or grinding those seeds so that they’re dead and can’t grow the next year. This is mechanically driven rather than hydraulically driven. In terms of price differences, the original tow behind Harrington Seed Destructor was about $200,000. The integrated Harrington Seed Destructor is somewhere around $150,000. The Seed Terminator is about $100,000. So what you’re seeing is as these competitors come to the market that price point is dropping, and we do expect that to continue.

Seed terminatorChaff deck or chaff tramlining works in a controlled traffic system. The idea is to put chaff on the permanent tramlines so if weeds grow there isn’t much impact on overall yield. The chaff in the tramline is also driven over multiple times, which can impair weed growth, and there is potential for seed decomposition in those tramlines. What farmers have seen is that there are fewer weeds growing in the tramlines, but it hasn’t been scientifically evaluated at this point.

chaff deck
Chaff lining can still be used outside of a controlled traffic system. The chaff is placed in a narrow row to decompose instead of spreading the seeds across the entire field. However, there is potential for some seeding or emergence issues if you’re seeding through this concentrated chaff row. It hasn’t been researched, but a lot of producers are adopting this in Australia as their first step in harvest weed seed control because it’s inexpensive and easy to implement.


The Australian experience

In Australia, a 2016 survey of 602 growers were asked about their adoption of narrow windrow burning, chaff carts, chaff tramlining, the bale direct, and the HSD. The Seed Terminator and integrated Harrington Seed Destructor were not released at the time so they don’t show up in the survey.

Across Australia 43 per cent of producers were using some method of harvest weed seed control. Narrow windrow burning was the most common. In Western Australia that number goes up to about 63 per cent. Western Australia is essentially where all of these methods were developed. Western Australia is really the epicentre because of herbicide resistance, and harvest weed seed control is spreading out from there.

The adoption of chaff tramlining this past harvest has skyrocketed. There is a lot more discussion about different systems on social media, and a lot more discussion about what works and what doesn’t work than we’ve see in past years. If that survey was to be redone I think we would see some of the tramlining and chaff lining skyrocketing.

Results from the same survey show that 82 per cent of producers said they expected to adopt some form of harvest weed seed control in the next five years with 46 per cent expecting to use narrow windrow burning. More producers would like to be using the iHSD, but they had concerns about the cost and the perception that it was unproven in terms of weed kill. The perception of unproven control of weed seeds is interesting because weed kill is where there is the most research.

Research has been done in Australia to show how effective harvest weed seed control was on controlling annual ryegrass populations in “focus paddocks” or “focus fields.” The research compared crop rotations where harvest weed seed control was used in 38 per cent of crops compared to rotations where it was only used in 11 per cent of crops. The ryegrass population was managed far more effectively where harvest weed seed control was used, and it has stayed very low.

Effects of HWSC in Australia:
Effect of HWSC in Australia
Photo courtesy of Michael Walsh.

Potential in Canada

In Western Canada we’ve believed that the physical impact implements that destroy seeds are most likely to have the best fit. They don’t require the burning, and it has some scientific testing behind it that shows it’s effective. So that’s where researchers have focused efforts in terms of testing a method for Western Canada.

We looked at the top 10 weeds in Saskatchewan and gave them a seed retention rating -- how well does the weed holds onto those seeds until harvest. A number of weeds are in the good or fair to good retention rating, and that’s promising. Green foxtail gets a good retention rating while buckwheat gets a fair to good. Volunteer canola is rated good. The unfortunate ones are the poors: wild oat, spiny annual sow thistle, narrow-leaved hawk’s-beard. Those have poor retention and are unlikely to be primary targets for harvest weed seed control because a lot of their seeds are already gone by harvest.

10weeds FocusOnHRLooking at some small plot experiments, seed retention of wild oat, cleavers, and volunteer canola was looked at. Volunteer canola retained most of its seed by the end of September, cleavers was intermediate and wild oat retained about 20 per cent of the seed by the end of September.

Kochia has good seed retention. Their seeds only mature after harvest, so most of the seed is still there at harvest, but the concern is that below the cutting height, typically six inches, there can still be over 5,000 seeds below that cutting height. So even though a lot of seed is collected by the combine, there could still be a lot missed and left in the field. At this point we aren’t sure what impact harvest weed seed control would have on kochia.

As part of my PhD research, we looked at running samples through the Harrington Seed Destructor in a stationary format set up in the shop. We mixed buckets of chaff with weed seeds and ran them through to determine how many are destroyed. We looked at five weed seed species: kochia, green foxtail, cleavers, volunteer canola, and wild oat. We put 10,000 seeds of each of those species into a five-gallon pail of chaff, put it into the Seed Destructor and assessed how many lived when they came out the other side.

A second study looked at weed seed size. Weed seed species are all different shapes, sizes and seed coat types. We took canola seeds and we hand sieved them to get thousand kernel weights between 2.2 grams per 1,000 and 5.8 grams per thousand.

We also looked at weed seed number by comparing 10 canola seeds up to a million canola seeds in the same volume of chaff. We also looked at chaff volume, so 10,000 canola seeds going through with no chaff or up to eight five-gallon pails of chaff in the same timeframe. And we also looked at chaff type, so barley, canola, and peas.

When we looked at weed seed species we did find significant differences in terms of control but our lowest level of control was still over 97 per cent killed. It worked really well on all the species that we tested.

In terms of canola seed size, we expected to see an increase in control as the size of the canola seed went up, and we did. But again, we’re within a percentage point of 98.5 per cent control so weed seed size isn’t a big factor in control.

Looking at weed seed number, once you have over 100 seeds going through, we were back up at that 98 per cent control.

As we increased the amount of chaff going in, initially our control increased, which may be that there’s more deflection within that mill. Those seeds get hit an extra time or two, and then it started to taper off. But again, we are in the 98 to 99 per cent control so it’s not going to have a huge impact in the field.

There was a similar story with chaff type. We did have less control in our canola chaff but we were running volunteer canola seeds through the seed destructor so there was likely a background presence of volunteer canola in our canola chaff that we did not account for. But again it’s by one-half per cent and we are still getting 98 to 98.5 per cent control.

In summary, what we found with the seed destructor was if you can get the weed seeds into the seed destructor you’re going to kill most of them – greater than 95 per cent.

The big question now is how does it work in the field? The answer is we don’t know yet. We have an ongoing study with the seed destructor in 20 producer fields where the seed destructor is in the field at harvest time. We harvest with the seed destructor and compare it to a pass with the seed destructor not milling the chaff. We learned a lot of lessons in 2017.

The first is that air velocity is really key. Chaff needs to be moved from the sieves, up and into the input of the tow behind Harrington. In order to get the chaff from the sieves, it has to go up into an input tube, and takes a fair bit of air velocity. If your air velocity is too low, your machine will plug. And if you don’t catch the plug fast enough, you end up with burning belts.

Greener, wet material also doesn’t work. We know it takes a lot more effort for the combine to thresh green or wet material. It’s a similar story with the mills. You need higher air velocity, and without it the green, wet material can plug where it forms a nice solid block of really hot, wet chaff in the blower. Green, wet material doesn’t grind well, either. So if you have green material in the field desiccation or swathing is going to be needed to dry the material down.

The other complication the tow behind HSD is a big machine that has problems with hills. The integrated seed destructor or the Seed Terminator makes a lot more sense for Western Canada. The research that’s been done in Australia shows that the tow behind unit and the integrated unit are very similar in terms of their control, so it’s still a valid test for those integrated units in Western Canada.

An example from a single field in 2017 shows some interesting results, although very preliminary. We compared photos from an untreated and treated Seed Destructor pass. There was substantially less volunteer canola in the treated pass after harvest. There is still some volunteer canola, but there’s substantially less.

We hope to start seeing benefits in the spring of 2018, but it is a three-year study. We’ll be back on the same locations for the next two harvests so that we can take into account the seed bank buffering that we’ll see in terms of our treatments.

These are new strategies. There’s always going to be bugs to work out, but they can be very effective in helping us manage the herbicide resistance that we’re currently facing.

For more stories on this topic, check out Top Crop Manager's Focus On: Herbicide Resistance, the first in our digital edition series.
Published in Weeds
Agricultural equipment dealers are working with Saskatchewan high schools to find a new generation of employees. | READ MORE
Published in Machinery
Weed control is one of the main challenges for flax growers, and is even more challenging under organic production systems. Because flax is a poor competitor with weeds, yield losses can be significant when weeds are present. Cultural and mechanical control options can be effective techniques for weed suppression and control in flax.
Published in Weeds
Pivot irrigation is by far the most common method of irrigating crops in Western Canada.
Published in Irrigation
About a decade ago, Kyle Folk was at his parents’ grain farm helping his dad load up a semi of canola to meet a contract when the two made an unpleasant discovery.
Published in Storage
A seed treatment is a vital and effective product, so long as it stays on the seeds where it can do its work. When it is released into the surrounding environment, however, it can cause significant political and environmental concern.
Published in Seed Treatment
Page 1 of 7

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Latest Events

Intercropping/Cover Crop Workshop
Wed Nov 21, 2018 @ 8:30am - 05:00pm
Ignite - FCC Young Farmer Summit
Wed Nov 21, 2018 @10:00am - 03:30pm
GrowCanada
Tue Nov 27, 2018
SaskWheat Grade School
Tue Nov 27, 2018 @ 9:00am -

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.