Crop Chemicals
Blackleg is caused by two species of the pathogen. The major one is called Leptosphaeria maculans. The other one is a much less virulent species called Leptosphaeria biglobosa. For control of the disease, pathologists look at some of the weak links where we can apply most of the impact on the disease. The pathogen only survives on residues. If you don’t have a residue, it doesn’t survive well in the soil. That’s why rotation is important.

The pathogen produces a fruiting body in the spring called a pseudothecium or another type called a pycnidium. They produce spores that land on the cotyledons of canola. If you have insect damage from pests like flea beetles, the infection can be worse. With wounding, the pathogen can get into the cotyledon tissue even without moisture. From there the infection develops and you see the cankers at the base of the stem later on in the growing season.
Slide 4
Photo courtesy of Gary Peng.

There are three important things that can lead to an infection:
·      there’s residue to harbour the pathogen inoculum
·      you need to have early infection to get into the stem
·      insect damage may help the infection to occur more severely. 

The disease was very prevalent in the late ’80s, early ’90s. Then we introduced some resistant varieties in the early ’90s, which brought down the occurrence for many years. Partially that was resistance bred into varieties, but we also had three- or four-year rotations. That was a big part of the whole management effectiveness.

In the last five to six years, the disease incidence has been creeping back up to 20 to 25 per cent in Alberta and Manitoba, and about 10 per cent in Saskatchewan. However, the average severity remained below level 1 (light). Research by Sheau-Fang Hwang in Alberta indicates that in most years, this level of severity could result in a yield loss of about two to eight per cent on a susceptible variety. But from a trade perspective, our trading partners want to see the disease level trend going down.

Why the upward trend?
The first reason for an increase in blackleg incidence is likely the change of the pathogen population, which is adapting to the resistant varieties. The pathogen population may be becoming more virulent or with a greater proportion of virulent isolates in it. 

Plant breeders have used major gene resistance to control the disease. The resistant gene blocks the infection by the pathogen carrying the corresponding avirulence gene. For example, an Rlm3 resistant gene would block the pathogen with avirulence AvrLm3 gene (abbreviated to Av3). It might be like a lock-and-key, but for some reason, over time, the Av gene may change and the resistant gene may not be able to recognize it.

My colleague, Randy Kutcher, looked at the change in pathogen populations in 2007 when he looked at the avirulent gene prevalence on the Prairies. In his work looking at 800 isolates of L. maculans, the percentage of Av2 and Av6 genes were very high in the population, and the others at more moderate to low levels. Further work in 2010 and 2011 with Dilantha Fernando at the University of Manitoba found the picture had changed quite a bit. The presence of the Av3 and Av9 genes had decreased quite a bit, but at the same time Av7 seemed to be increasing quite a bit. That means the Rlm3 gene would be less likely to be effective across the Prairies because the Av3 gene had changed mostly to the virulent type. The Rlm3 gene was first introduced back in early 1990s and has been used for over 20 years.

Other research in Fernando’s lab also looked at what resistant genes are present in 206 varieties/breeding lines in Western Canada. The resistance gene that was predominantly found was Rlm3 in around 70 per cent of the varieties/breeding lines. There was also a bit of Rlm1 detected as well. Overall, the diversity of R genes is still quite limited in the germplasm tested. The important message is that Rlm3 is not going to remain effective on the Prairies because the corresponding Av3 gene is already fairly low in the pathogen population. 

However, when we looked at field data in Alberta and Manitoba, while the occurrence of other Av genes was high, disease levels ranged widely. This told us there was something else going on, which we called non-specific resistance in our varieties, although the effect was definitely less than the major gene resistance.

We further investigated this non-specific resistance in our varieties. We tested commercial varieties with a pathogen without a corresponding Av gene so any resistance observed would be due to non-specific gene resistance. Almost all the varieties had a slightly smaller amount of the disease on inoculated cotyledons than the susceptible Westar. At the same time, it’s a totally different kind of resistance reaction as opposed to the major gene resistance. It would not stop the infection completely – it just slowed it down a little bit, and on some varieties, substantially.

A further look at three of those varieties found the progress of plant mortality originated from cotyledon or petiole inoculation was somehow reduced, but varied between the varieties. Using a fluorescent protein gene labeled isolate, photography was able to show the reduced spread of the pathogen in the cotyledon compared to the susceptible Westar variety.

If you can slow down the movement from the cotyledon via the petiole into the stem, there may not be enough of the pathogen getting into the stem before the cotyledons drop off. This is one of the reasons that non-race-specific resistance works in some of those varieties we have.
SLIDE 22
Photo courtesy of Gary Peng.
Click here for part two: management strategies

This article is a summary of the presentation “Managing blackleg of canola in Western Canada,” delivered by Dr. Gary Peng, Agriculture and Agri-Food Canada, Saskatoon, at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.

Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.

Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration

Published in Diseases
Management strategies
The Canola Council of Canada is proposing a risk assessment chart. If you have a four-year rotation, likely your risk of having blackleg is very low. We know it’s effective, but I realize it isn’t always easy to implement. [Miss part one? Click here]

Scouting is important because it gives you a sense of your risk situation. There is an easy procedure that can be used to assess risk. After swathing, pull 50 plants, cut the stems at the base of the plant where blackleg develops and assess the damage to the stem. Use the pictorial guide I developed to assess the level of disease. If you don’t have any disease or very light disease, your variety might still be holding fairly well as long as you continue with longer crop rotation. But if you have an R-rated variety with a much higher disease level than you expected, your variety may not be holding up.

If you do want to switch varieties, try to rotate to another major resistance gene. We currently don’t have enough public information from seed companies to know what their resistance sources are. The Canola Council of Canada has proposed a new resistance labelling system to show the resistance gene labelling. It is voluntary and may start in 2018.   
Slide 25
Photo courtesy of Gary Peng.

If you don’t have any issues or major blackleg damage, there’s no urgency for you to switch between resistance groups right away, but it’s always a good practice to rotate them if you know the R genes. We understand 90 per cent of growers would rotate among the different varieties today mostly for weed management options. There is a similar principle in rotating varieties for disease management.

I want to also stress that we have quite a diverse pathogen population on the Prairies. In reality, over 90 races have been detected. That means with every known resistance gene, there is a different virulent isolate out there that would be able to overcome the resistance right away. We really need to consider, if we have different R genes available, rotation of those R genes. And we also need to maintain the non-race-specific resistance, which has been serving us relatively well.

What about fungicides?
Research on various fungicide products and application timings has been conducted. One involved 17 station years across the Prairies. We used four fungicide products, mostly the strobilurins and a triazole, and a combination of both active ingredients. We looked at applications at the two- to four-leaf stage, the bolting stage, and an application at both stages.  We also compared a susceptible variety with a resistant and a moderately resistant variety.

When we put all the data from 17 station years together, the early application of a strobilurin fungicide reduced the disease severity and also increased yield quite significantly compared to the non-treated check. The average disease severity was around about 1.5. The later application did not work, which makes sense because the key stage of infection is the cotyledon. 

We further looked at the data and divided it into two scenarios: those fields with much lower disease levels of around a 0.5 severity rating, and those with a disease severity of about 2.5. In the fields with low disease severity, the fungicide application did not provide any yield benefit. Where disease severity was about 2.5, a fungicide application at the two- to four-leaf stage reduced the disease severity significantly and also increased yield by seven bushels per acre compared to the non-treated check. 

However, these results were on Westar – a susceptible variety that was used to show the worst case when an R/MR variety is losing resistance. We looked at R/MR canola varieties at the 17 site years and found none of the fungicide applications were effective in providing a yield advantage (also indicating that the R/MR varieties have stronger tolerance to blackleg impact). That means if you have a certain level of resistance in your variety, in most cases the fungicide application would not provide a substantial yield benefit.

Where a fungicide treatment might come in is if the varieties you have been using are starting to show signs of an increased amount of blackleg. You should scout crops and assess the level of disease development over time. Also consider the length of the crop rotation and other risk factors outlined by the Canola Council of Canada. If you feel you are at high risk, an early application at the two- to four-leaf stage may be warranted.
Risk chart


This article is a summary of the presentation “Managing blackleg of canola in Western Canada,” delivered by Dr. Gary Peng, Agriculture and Agri-Food Canada, Saskatoon, at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.

Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.

Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Published in Diseases
Every farmer has to deal with weed control. With the introduction of new weeds compounded by the growing issue of herbicide resistance, choosing effective herbicides has become a daunting task. Savvy Farmer, Canada’s foremost on-line authority on crop protection, has released two free new apps that every farmer who deals with weed control should have on their smartphone or tablet.

Savvy Weed ID & Control is a weed identification app that not only includes an industry-leading 300+ Canadian weeds, but also identifies every herbicide brand in Canada that will control each weed in any crop. What sets it in a class of its own though is its real-time link to the Savvy Farmer pest control database, allowing the app to instantly search through over 1,500 pesticide brands to identify every brand can control that mystery weed in any of the over 900 crops grown in Canada.

The second app is Savvy Resistance Manager. This app identifies all herbicide brands will control herbicide resistant weeds, even those with multiple resistance, in any crop. In Canada, over 40 weed species are now herbicide resistant to one, or in many cases, several different herbicide modes of action. More disturbing though is that herbicide resistance is growing in severity every year. Savvy Resistance Manager is fast and easy to use – in just 4 steps the app will generate a list of all herbicide brands that are registered to control your resistant weed in any one of 900 crops, and using the application method you prefer.

Download both apps today by searching for “Savvy Weed” or “Savvy Resistance” in either the App Store (Apple) or Play Store (Android)
Published in Corporate News
Landscape characteristics including crop diversity or field size have less of an effect on the amount of insecticide used than the kind of crop a new study shows.

Over the past half century, food production has intensified to meet the growing demand. And as agricultural fields have become ever larger, more pesticides are required to enhance yield. | READ MORE
Published in Corporate News
Dr. Kelly Turkington discusses considerations to spray a fungicide, recommendations for Fusarium head blight in cereals and how to get the most out of your cereal fungicide applications. 

Click here for the full summary of Dr. Turkington’s presentation.

Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.

Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Published in Diseases
Crop rotation is an important tool for our first line of defence in Western Canada. From a pathologist’s perspective, a wheat-canola-wheat-canola rotation – a single year between host crops – is not long enough to realize one of the benefits of rotation and allow decomposition of any infested crop residue. 

Variety resistance is also an excellent tool. When you have a variety with good levels of resistance, you really don’t need to spray a fungicide. The problem is that in your field you’re facing a range of diseases and it’s been very difficult to get varieties that have good levels of resistance to absolutely every disease issue that you might have in that field. If you have a tight rotation, your variety may not have the package of resistance that you need and, as a consequence, you will start to rely on fungicides. 

We like to use the disease triangle to express what a disease is all about. It’s the result of a susceptible host, a favourable environment and sufficient quantities of a virulent pathogen. The key thing to remember is that what you do in terms of crop management practices will impact the interaction of those three factors and ultimately, the risk of disease. 
Disease triangle
The disease triangle. Source: Dr. Kelly Turkington

Interation of fungicides with variety resistance
At a trial in Melfort, Sask., three barley varieties rated susceptible (Sundre), intermediate (Chigwell) and with a good resistance package (Vivar) against net-form net blotch were sprayed with Twinline (metconazole + pyraclostrobin) fungicide at the flag-leaf stage. With no fungicide application, Sundre had just under 20 per cent leaf area diseased on the penultimate leaf, but there was very little disease on Chigwell and Vivar with or without a fungicide. With a fungicide, there was a dramatic reduction in disease with Sundre.

If we look at yield, Sundre went from around 115 bushels per acre (bu/ac) without a fungicide to 145 bu/ac with the fungicide application. Chigwell had a bit of a response to fungicide application, which may be because it has an intermediate level of resistance. Vivar’s response to fungicide was basically flat. So, if you’re using a resistant variety that is giving you the protection you need, you don’t need to worry about putting on a fungicide.

General knowledge on application timing
In terms of fungicide application timing in cereals for leaf disease, it is important to know where yield and grain fill comes from. The literature suggests the wheat ear (head) contributes about 22 per cent to yield, while the flag-leaf contributes about 40 to 45 per cent, and penultimate (leaf below the flag) contributes about 23 per cent. Those are the key plant tissues that you want to protect. 

In barley, the flag-leaf is less important because it tends to be quite small in some varieties. The literature for barley suggests the head contributes around 13 per cent, the flag-leaf stem 25 per cent, the flag-leaf nine per cent and the penultimate about 20 per cent.

Overall, if you’re looking at a target as far as protecting the plant tissues that are key for grain filling and yield, the upper canopy tissues in those cereal crops are going to be your target.

Pathogen characteristics
The characteristics of the pathogen can be very important when trying to improve your ability to manage plant diseases with a fungicide. A monocyclic pathogen has one cycle of spore production, host infection and disease development, so there’s a very specific target there. Fusarium head blight (FHB) is a monocyclic pathogen.

Polycyclic pathogens cycle on the living crop more than once per growing season. These are diseases like stripe rust, tan spot, Septoria, net blotch and scald. This cycle may mean you can’t rely on a single application and may need several applications to get the level of control you desire, especially with highly susceptible varieties and under favourable weather conditions.

Stripe rust is an example of a polycyclic pathogen. It can move from spring wheat onto winter wheat seedlings in the fall. If I were advising a producer, I would note the presence of stripe rust in the fall and then be out in the winter wheat field as soon as the crop started to re-grow in the spring to see if the stripe rust fungus had survived. The stripe rust pathogen can rapidly cycle on the wheat crop: spores released from pustules on infected leaves are carried by the wind to healthy leaf tissue where they germinate, produce hyphae, penetrate plant tissue and within seven to 14 days, you’ll have symptoms – including pustules that produce a new crop of spores. So, every seven to 14 days, stripe rust can cycle on the crop well before head emergence. Thus, later on, on those upper-canopy leaves, you may see symptoms of stripe rust that can cause significant concern, especially if the disease becomes established in the crop before flag-leaf to head emergence.

Fungicide insensitivity
What about pathogen adaptation to the active ingredients in fungicides? Pathogens with a high risk of adapting to the active ingredients in fungicides have the following characteristics: they have mixed reproduction, so they reproduce sexually as well as asexually; and they also have an outcrossing system of reproduction where with they have male and female isolates – or mating types, – so you need a male and female for sexual reproduction to occur.

Sexual reproduction where different mating types are needed has the potential to create more genetic variability in the fungal pathogen, which can then be selected for when applying a fungicide. The other important thing is high genetic and pathogenic diversity in that pathogen, which increases the risk that a pathogen will adapt.

An example of a pathogen at moderate to high risk of adaptation to either plant disease resistance or fungicide active ingredients is the net blotch pathogen. In a study funded by the Western Grains Research Foundation, Alireza Akhavan, a PhD student working at the University of Alberta, found high levels of genetic/pathogenic diversity in the net blotch pathogen. It also reproduced asexually as well as sexually and with mixed mating types. Using a laboratory assay, Alireza found a few isolates that were insensitive (resistant) to Tilt (propiconazole) and, in some cases, insensitive to Headline (pyraclostrobin).

Randy Kutcher at the University of Saskatchewan is also looking at the tan spot fungus and potential insensitivity in the tan spot population.

Shifts in the fungicide sensitivity of cereal pathogens have been recognized in Europe for some time now and there have also been reports of changes in North America.

For example, in February 2015, Chris Mundt and colleagues at Oregon State University put out a disease update notice (Oregon State University, Disease Update, February 20, 2015, Chris Mundt, Mike Flowers, Nicole Anderson and Clare Sullivan), stating that, based on surveys from 2014, there were indications some fields had Septoria resistance to strobilurin (Group 11) fungicides. They also reported resistance to triazoles (Group 3) was starting to build.

Their recommendation in that part of the Pacific Northwest was to only apply a fungicide for early-season leaf disease control when stripe rust was present, because the fungicides were still effective against stripe rust. They also recommended using a succinate dehydrogenase inhibitor (SDHI) fungicide (Group 7) once per year, and for growers who did so to combine it with either a strobilurin or perhaps a triazole.

Click here to see part two: managing the tools available, including fungicide application timing trials.


This article is a summary of the presentation “Getting the Most Out of Your Cereal Fungicide: A Western Canadian Perspective,” delivered by Dr. Kelly Turkington, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.

Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.

Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Published in Diseases

Managing the tools available
Given that fungicides are an important component of their leaf disease management programs, farmers need to manage the fungicides we have by using products with more than one active ingredient and/or rotating the products they use. [Miss part one? Click here.]

When a susceptible variety is grown and weather conditions are very favourable, farmers may be concerned about early season leaf disease development. Rather than applying a fungicide with their herbicides, one option might be to look at a seed treatment and use xylem-mobile fungicides that will move from the seed up into the leaf tissue to provide some early season leaf protection.

These fungicides are mixed with other fungicides that give us good activity on some of the root rots, whether it’s Fusarium or Rhizoctonia or Pythium and so on. Ideally, one may want to use a seed treatment with different active ingredients versus foliar fungicides that may be used later on in the season, with one application of a triazole to give us some suppression of FHB and late-season leaf disease management. 

Using a seed treatment for early season leaf disease management is food for thought and may be a strategy to consider.

Nature of a fungicide influences risk of resistance
The nature of the fungicide also plays an important role in effectiveness. Some fungicides do very well in terms of particular plant pathogen groups versus other fungicides, so check the provincial crop protection guides to make sure you are choosing the right fungicide for the disease issues you are targeting. 

The nature of the fungicide also influences the risk of fungicide resistance. Fungicides with a very specific individual target (single site activity) within the pathogen are typically at higher risk versus actives that have multiple targets (multi-site activity).

Mobility within the plant also plays a role, as it influences the efficacy, persistence and period of activity. Mobility also influences application technology, so if the product is not systemic, it will be especially critical to use practices that ensure good coverage of the plant surface you are trying to protect.

Fungicide timing and leaf spot diseases
Fungicide application timing is important for cereal leaf spot management. From 2010 to 2012, we looked at the effect of fungicide timing on leaf spot diseases in barley at 13 sites. Specifically, we compared tank-mixing a fungicide with herbicide versus putting that fungicide on at the flag-leaf stage versus using a split application, a half rate earlier on and then coming in with either a half rate or a full rate of fungicide at flag-leaf emergence.

Overall, our results indicated the best leaf disease control and the highest yields were achieved where we put a fungicide on at the flag-leaf stage and where we did not delay the herbicide application and, thus, had early weed removal. 

Table 1: Yield and herbicide/fungicide treatment
slide 33
Turkington et al. 2015. The impact of fungicide and herbicide timing on foliar disease severity, and barley productivity and quality.               Can. J. Plant Sci. 95: 525–537.

Timing also a factor in stripe rust control
Another trial, led by Kutcher and Brian Beres with Agriculture and Agri-Food Canada in Lethbridge, Atla., and conducted in Lacombe, Alta., illustrated the importance of fungicide application timing for stripe rust control in winter wheat. The most effective application for AC Bellatrix, a susceptible variety, was in the spring at the flag-leaf stage. For Radiant, a variety with some resistance, there was no need for a fungicide.

As mentioned previously, seed treatments may be an option for early- to mid-season leaf disease management. Recently, we did a set of experiments – including at Melfort – looking at the interaction of variety, seed treatment and fungicide on net blotch on barley. In 2013, we simply used a seed treatment without a fungicide and reduced the level of disease to less than 10 per cent of the leaf area affected from 30 per cent in the untreated control. If you looked at Twinline foliar fungicide applied with no seed treatment, there was very good control. Where we combined seed treatment with foliar treatment, it really didn’t improve control.

Our best yield response was where we simply put Twinline on at the flag-leaf emergence stage, whether a seed treatment was used or not. Overall, if you look at work done by research groups across Western Canada, if you have the opportunity to choose a variety that has good levels of resistance to the disease spectrum you’re dealing with, that’s an excellent tool to manage disease and will help you to avoid a fungicide application. 

However, the varieties you want grow may not have a complete package of resistance to the diseases of concern. Thus, it will be important to scout fields at or just prior to flag-leaf emergence to assess disease risk and its potential impact to determine if a foliar fungicide application is required to protect key upper plant canopy tissues. 

FHB application timing
Currently the recommendation for FHB fungicide application is to spray when you’ve got 75 per cent of the heads out of the boot – that’s when you can start – to about when you have 50 per cent of the head showing anthers in the middle part of that head. The problem with starting at 75 per cent head emergence is that 25 per cent of the heads are still in the boot. Thus, given the nature of the fungicides that we use for FHB, applications at 75 per cent head emergence will not provide much, if any, benefit for those heads not yet emerged.

Recent research from the United States suggests we may have a wider window for application post head emergence to get the most out of that fungicide application. 

Trials from the U.S. looked at fungicide timing and effect on FHB disease rating and DON content with applications at the start of anthesis (when you first see yellow anthers emerging from the middle part of the wheat head) and then either two, four or six days following the start of anthesis. Overall, results suggested that even at four and six days after anthesis, control was as good as applications at anthesis, and in some cases may actually be slightly better.

The trend was similar with DON content.

I think, in terms of getting the most out of our fungicide application for FHB, we need to look at revising our target. Maybe going a little later is something to consider so you provide protection for all heads within the crop. However, growers are cautioned that they need to follow label recommendations and the pre-harvest intervals for the products they use.

Expectations for fungicides
In terms of expectations for fungicides, it’s important to be realistic. Fungicides can certainly be effective tools for some diseases, but it’s important to use them prudently and to manage those fungicides so they remain effective tools for you over the next 10, 15, 20 years. Timing can have a huge impact. Fungicide application also doesn’t mean a completely disease-free crop and, thus, it is important to leave some check strips so that you can adequately judge fungicide performance.

Overall, farmers are encouraged not to rely exclusively on fungicides as their only defence against plant disease. Try to use the other tools in the toolbox. The more tools you have, the broader your ability to control disease and other pest and crop management issues in your crop.  By using a range of tools, including crop rotations of at least two years between host crops, you’re going to prolong the effectiveness of tools such as disease resistance and fungicides into the future.


This article is a summary of the presentation “Getting the Most Out of Your Cereal Fungicide: A Western Canadian Perspective,” delivered by Dr. Kelly Turkington, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Field Crop Disease Summit, Feb. 21-22, 2017. Click here to download the full presentation.

Don't forget to subscribe to our email newsletters so you're the first to know about current research in crop management.

Top Crop Manager's Herbicide Resistance Summit has been announced! Sign up today for early-bird pricing: https://www.weedsummit.ca/event/registration
Published in Diseases
Last year (2016) marks the 22nd Census of Agriculture since Confederation. Here are some key takeaways from Statistics Canada.

Since 2011, there are fewer farms, but the farms are larger. While total farm area is down, areas dedicated to cropland rose to 93.4 million acres in 2016. The average sits at 820 acres in 2016.

Canola remains the biggest crop; accounts for more than one-fifth of cropland

One-third of Canadian agricultural production was exported in 2013.

Number of farm operators has declined, while average age continued to rise.

Despite the increase in average age, only 1 in 12 operators reported having a formal succession plan.

Proportion of operators under 35 years of age edged up for the first time since 1991.

Ag operations in Canada employed 280,315 people in 2015.

77,970 women are listed as farm operators, accounting for 28.7 per cent of the industry.

One in eight farms sold food directly to consumers.

Total value of farm machinery and equipment owned and leased by agricultural operations increased 15.4 per cent to $53.9 billion.

Ontario has the highest percentage of farms using renewable energy at 10.4 per cent

Farm profits unchanged since 2010.

You can read the full report here.
Published in Corporate News
With the confirmation of glyphosate-resistant (Group 9) kochia across the Prairies, a renewed focus on best chemfallow management practices is needed.
Published in Herbicides
Scientists with the University of Tennessee Institute of Agriculture have found that the overall health of honeybee hives actually improves in the presence of agricultural production.

The study, “Agricultural Landscape and Pesticide Effects on Honey Bee Biological Traits,” which was published in a recent issue of the Journal of Economic Entomology, evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honeybee health. Results indicated that hive health was positively correlated to the presence of agriculture. According to the study, colonies in a non-agricultural area struggled to find adequate food resources and produced fewer offspring.

“We’re not saying that pesticides are not a factor in honeybee health. There were a few events during the season where insecticide applications caused the death of some foraging bees,” says Mohamed Alburaki, lead author and post-doctoral fellow with the University of Tennessee Department of Entomology and Plant Pathology (EPP). “However, our study suggests that the benefits of better nutrition sources and nectar yields found in agricultural areas outweigh the risks of exposure to agricultural pesticides.”

A​ccording to the study, hives located in areas with high to moderate agricultural vegetation grew faster and larger than those in low or non-agricultural areas. Researchers suggest the greater population sizes enabled better colony thermoregulation in these hives, as well.

Meanwhile, bees located in a non-agricultural environment were challenged to find food. Although fewer pesticide contaminants were reported in these areas, the landscape did not provide sustainable forage. In fact, during the observations, two colonies in the non-agricultural areas collapsed due to starvation.

Disruptions and fluctuations in brood rearing were also more notable in a non-agricultural environment. Interestingly, brood production was highest in the location that exhibited a more evenly distributed mix of agricultural production, forests and urban activity.

“One possible explanation for this finding could be the elevated urban activity in this location,” says Alburaki. “Ornamental plantings around homes or businesses, or backyard gardens are examples of urban activity that increase the diversity of pollen in an area. Greater pollen diversity has been credited with enhancing colony development.”

Researchers also evaluated trapped pollen from each colony for pesticide residues. Low concentrations of fungicides, herbicides and insecticides were identified, but at levels well below the lethal dose for honey bees. Imidacloprid was the only neonicotinoid detected, also at sub-lethal levels.

Agricultural pesticides, particularly neonicotinoids, are considered by some to be a key factor in declining honeybee populations. The UTIA study found that higher exposure to pesticides in agricultural environments did not result in measurable impacts on colony productivity.

This study was supported in part by the U.S. Department of Agriculture’s Agricultural Research Service Pest Management Program.
Published in Corporate News
Health Canada has published the final re-evaluation decision on glyphosate. Following a rigorous science-based assessment, Health Canada has determined that when used according to the label, products containing glyphosate are not a concern to human health and the environment.

Based on this re-evaluation, Health Canada will continue the registration of products that contain glyphosate, but will require updates to product labels. By April 2019, manufacturers will be required to ensure that all commercial labels on pesticides containing glyphosate include the following:

·      A statement indicating that re-entry into the sprayed areas should be restricted to 12 hours after application in agricultural areas where glyphosate products were used.

·      A statement indicating that the product is to be applied only when the potential to spread to areas of human activity, such as houses, cottages, schools and recreational areas, is minimal.

·      Instructions for spray buffer zones to protect non-targeted areas and aquatic habitats from unintended exposure.

·      Precautionary statements to reduce the potential for runoff of glyphosate into aquatic areas.

Health Canada will continue monitoring research on potential impacts of glyphosate products to ensure the safety and security of Canadians and the environment. The department also says they are committed to working closely with its international counterparts on evidence-based approaches to pesticide regulations.

Don't forget, the Pesticide Label Search App can help you find the latest detailed instructions, first aid statements and warnings on the label.
Published in Corporate News
There are three opportunities to manage weeds with herbicides in order to achieve a successful soybean crop.  

1. Pre-seed or pre-emergent burndown: both ensure the crop is off to a clean start. An effective strategy is tank-mixing glyphosate with a pre-seed or pre-emergent burndown of a Group 14 herbicide to provide early season weed control and can target weeds that cannot be controlled in-crop. Using multiple modes of action can also delay glyphosate resistance and manage existing Group 2- and glyphosate-resistant weeds.

2. In-season herbicide application: this manages weeds that may have emerged later.

3. Pre-harvest application: improves crop uniformity, harvestability and perennial weed control.

Research by University of Guelph weed scientist Dr. Clarence Swanton shows that soybean plants can sense the presence of weeds in the soil, and will change their physiology and growth patterns if they detect above-ground weed competition.

Swanton and his team are conducting ongoing research to determine whether these cellular-level changes impact yield, or if the plant can repair itself or compensate for any injury.

In earlier research, Swanton’s team also determined that the critical weed- free period for soybeans is from the first to the third-trifoliate leaf stage, and weeds that emerge with or after the soybean crop have an impact on yield.

Bryce Geisel, technical marketing specialist for herbicides at BASF Canada, says it’s important to choose products that use a different mode of action than the burndown. “This can control a wider spectrum of weeds and help delay herbicide resistance,” he says. “Doing a pre-seed application can help growers properly time an in-crop application, and ensures that weeds are more manageable for that second pass.”
Published in Corporate News
If “technology transfer tool” can be defined as a way to get information into the hands of as many people as possible, weather-based disease forecasting models are the perfect example of how this works in practice.
Published in Diseases
Is there an interaction between seeding rate of pea and lentil, disease incidence, and fungicide effectiveness? This question was the driving force behind an Agricultural Demonstration of Practices and Technologies (ADOPT) Program project.
Published in Fungicides
The Canadian Food Inspection Agency has found traces of the controversial herbicide glyphosate in nearly 30 per cent of about 3,200 food products it tested, and residue levels above the acceptable limits in 1.3 per cent of the samples. | READ MORE
Published in Corporate News
The late harvest in fall 2016 created more than just delays in crop removal – fields were dirty with weed growth and there was limited time for fall herbicide application. As a result, many farmers are expecting weedier fields this spring and will need to be diligent in using the best weed control strategies including pre-seed herbicides and the best in-crop solutions.

To assist farmers in what will likely be a more challenging spring battle with weeds, Dow AgroSciences has announced that the Diamond Rewards herbicide offer that was previously only available to Nexera customers will be open to all growers seeding any Roundup Ready and Clearfield canola varieties this spring.

Effectively immediately, with a minimum purchase of 240 acres (6 cases) of Eclipse, any Roundup Ready canola grower can qualify for the $2.00 per acre rebate. Similarly, with a minimum purchase of 240 acres (6 cases) of Salute, any Clearfield canola grower can qualify for the $2.00 per acre rebate.

Nexera canola growers will continue to receive the rebate with no minimum purchase requirement. Farmers must be registered for the Dow AgroSciences Diamond Rewards program and purchases must be made between December 1, 2016 and November 30, 2017 to qualify.

Click for more information on Eclipse and Salute.  
Published in Herbicides
Just over 20 years ago, researchers initiated the first bioherbicide research and development program in the country at Agriculture and Agri-Food Canada (AAFC) in Saskatoon. Led by Karen Bailey (who recently retired), the program has made significant advancements in bioherbicide development for horticulture and turf crops, and more recently, promising solutions for agriculture. Bioherbicide product development is a welcome addition to the integrated weed management toolbox for crop production. Biopesticides are classified as “reduced-risk” products by the Pest Management Regulatory Agency (PMRA).
Published in Herbicides
In 2013, two University of Guelph weed scientists began collaborating on alternatives to herbicides for weed control. The report, by Francois Tardif and Mike Cowbrough, was released in 2016.
Published in Weeds
FMC Corporation and DuPont has announced the signing of a definitive agreement for FMC to acquire the portion of DuPont’s Crop Protection business it must divest to comply with the European Commission ruling related to its merger with The Dow Chemical Company. Additionally, DuPont will acquire FMC Health and Nutrition and receive $1.2 billion in cash. FMC will acquire DuPont’s global chewing pest insecticide portfolio, its global cereal broadleaf herbicides, and a substantial portion of DuPont’s global crop protection R&D capabilities. In 2017, FMC expects this acquired business will generate approximately $1.5 billion in revenue and $475 million of EBITDA.

     After closing of the acquisition, FMC Agricultural Solutions will become the fifth largest crop protection chemical company in the world by revenue, with estimated annual revenue of approximately $3.8 billion.

     The acquired portion of DuPont’s crop protection business includes an industry-leading selective insecticide portfolio consisting of Rynaxypyr, Cyazypyr and Indoxacarb. The first two products have full patent protection over their respective active ingredients.

     The acquired portfolio also includes DuPont’s global cereal broadleaf herbicides, consisting of nine active ingredients and multiple formulated products, including DuPont’s proprietary PrecisionPac technology.

     The acquisition will bring DuPont’s discovery and development organization, including its Delaware crop protection research headquarters, 14 regional development labs and related regulatory capabilities. This organization includes a pipeline of 15 synthetic active ingredients currently in development, covering insecticides, herbicides and fungicides, and an extensive library of 1.8 million synthetic compounds. The majority of DuPont’s crop protection research workforce will transfer to FMC as part of this transaction.
Published in Corporate News
Page 1 of 8

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace