As swede midge populations continue to rise in Quebec, canola growers are looking for better ways to manage the pest. Entomologist Geneviève Labrie is leading a two-year research project to help advance integrated management strategies for swede midge.
Published in Insect Pests
Last year, Ontario had its first-ever detection of clubroot symptoms in canola. On the heels of that discovery came an even more unsettling surprise – a survey found the pathogen scattered across the province’s main canola-growing areas and this year, the symptoms are showing up in more fields.
Published in Canola
Despite being at opposite ends of the planet, Canada and Australia have long been soul sisters, But it’s in agriculture where the similarities come to the fore, with very similar commodity profiles, particularly for grain, dairy and protein.

And despite very different target markets, trade agreements and government attitudes, each country’s agricultural communities are after one thing — a profitable and expanding appetite for their produce. | READ MORE
Published in World Outlook
Two of the most commonly used insecticides around the world are imidacloprid (neonicotinoid) and chlorpyrifos (organophosphate). In a new paper, published in the journal Scientific Reports, they have been found to be toxic to seed-eating songbirds, even affecting their migration. 

University of Saskatchewan biology professor Christy Morrissey stated in a press release, “Studies on the risks of neonicotinoids have often focused on bees that have been experiencing population declines. However, it is not just bees that are being affected by these insecticides.” | READ MORE
Published in Insecticides
Several efforts are underway to develop new tools and management strategies for blackleg disease in canola. Severe epidemics of blackleg can result in significant yield losses. Researchers have developed a new blackleg yield loss model for canola and an associated set of guidelines and recommendations for farmers and industry to help understand the economic impacts of this significant disease.
Published in Canola
Soil characteristics like organic matter content and moisture play a vital role in helping plants flourish. It turns out that soil temperature is just as important. Every plant needs a certain soil temperature to thrive. If the temperature changes too quickly, plants won’t do well. Their seeds won’t germinate or their roots will die.

“Most plants are sensitive to extreme changes in soil temperature,” said Samuel Haruna, a researcher at Middle Tennessee State University. “You don’t want it to change too quickly because the plants can’t cope with it.”

Many factors influence the ability of soil to buffer against temperature changes. For example, when soil is compacted the soil temperature can change quickly. That’s because soil particles transfer temperatures much faster when they are squished together. When farmers drag heavy machinery over the soil, the soil particles compact. Soil temperature is also affected by moisture: more moisture keeps soils from heating too quickly.

Research has shown that both cover crops and perennial biofuel crops can relieve soil compaction. Cover crops are generally planted between cash crops such as corn and soybeans to protect the bare soil. They shade the soil and help reduce soil water evaporation. Their roots also add organic matter to the soil and prevent soil erosion. This also keeps the soil spongy, helping it retain water.

But Haruna wanted to know if perennial biofuel and cover crops could also help soils protect themselves from fluctuating temperatures. Haruna and a team of researchers grew several types of cover and perennial biofuel crops in the field. Afterwards, they tested the soils in the lab for their ability to regulate temperature.

“I was amazed at the results,” Haruna said. He found both perennial biofuel and cover crops help soils shield against extreme temperatures. They do this by slowing down how quickly temperatures spread through the soil. Their roots break up the soil, preventing soil molecules from clumping together and heating or cooling quickly. The roots of both crops also add organic matter to the soil, which helps regulate temperature.

Additionally, perennial biofuel and cover crops help the soil retain moisture. “Water generally has a high ability to buffer against temperature changes,” said Haruna. “So if soil has a high water content it has a greater ability to protect the soil.”

Although Haruna advocates for more use of cover crops, he said it’s not always easy to incorporate them into farms. “These crops require more work, more financial investment, and more knowledge,” he said. “But they can do much for soil health.” Including, as Haruna’s research shows, shielding plants from extreme temperature changes.

“Climate change can cause temperature fluctuations, and if not curtailed, may affect crop productivity in the future,” he said. “And we need to buffer against these extreme changes within the soil.”

Haruna hopes to take his research from the lab and into the field. He says a field experiment will help him and his team collect more data and flesh out his findings

Read more about Haruna’s research in Soil Science Society of America Journal. A USDA-NIFA grant funded this research (Cropping Systems Coordinated Agricultural Project: Climate Change Mitigation and Adaptation in Corn-based Cropping Systems).
Published in Seeding/Planting
It doesn’t matter how you look at it, clubroot is an ugly threat to the Canadian canola industry.

The disease does unsightly things to the plant, producing galls and deformities that will effectively choke it to death.

The effect of clubroot on yield is just plain nasty — yields can be reduced to zero.

Plus, the fact that the only effective control is abstinence from growing canola, which is typically one of the biggest cash earners on Prairie farms, is causing some ugly confrontations between farmers and their local governments. For the full story, click here
Published in Diseases
When learning from agronomists and farmers about their experience with managing glyphosate resistant Canada fleabane, there is consensus that multiple strategies are needed and that simply tank-mixing another mode of action will not be a good long-term approach. Since 2016 we have evaluated different management tactics for Canada fleabane. READ MORE
Published in Weeds
In 2016 the milder winter conditions resulted in early leaf and stripe rust infections in Tennessee and Kentucky. This resulted in rust spores being blown into Ontario earlier than we typically see. By mid-May 2016, stripe rust was prevalent in most areas of southwestern Ontario.

Growers who selected tolerant varieties or applied a foliar fungicide were able to keep the disease at bay. However, growers that selected susceptible varieties and did not apply a foliar fungicide saw significant yield reductions where the disease was present.

In 2017, stripe rust again arrived early in southwestern Ontario and was found in one field in Essex County the first week of May. Although we have not historically seen stripe rust at significant levels in Ontario in the past, it is important to have a plan in place in 2018 for managing this disease. For the full story, click here
Published in Diseases
The Climate Corporation, a subsidiary of Monsanto Company, recently announced at the Precision Agriculture Conference, the launch of the Climate FieldView digital agriculture platform into Western Canada for the 2018 growing season.

With Climate’s analytics-based digital tools, more Canadian farmers will be able to harness their data in one connected platform to identify and more efficiently manage variability in their fields, tailoring crop inputs to optimize yield and maximize their return on every acre.

In September 2016, the company first announced the introduction of the Climate FieldView platform in Eastern Canada, where hundreds of farmers across nearly one million acres have been experiencing the value of data-driven, digital tools on their operations.

Now, farmers in Manitoba, Saskatchewan and Alberta will have the ability to use the Climate FieldView platform to uncover personalized field insights to support the many crucial decisions they make each season to enhance crop productivity.

“The Climate FieldView platform is a one-stop shop for simple field data management, helping Canadian farmers get the most out of every acre,” said Denise Hockaday, Canada business lead for The Climate Corporation. “Through the delivery of the platform’s powerful data analytics and customized field insights, farmers across Canada have the power to tailor their agronomic practices more precisely than ever before, fine tuning their action plans for the best outcome at the end of the season.”

Over the past year, the Climate FieldView platform had a strong testing effort across many farm operations in Western Canada, enabling the Climate team to further develop the platform’s compatibility with all types of farm equipment and crops, including canola and wheat, to collect and analyze field data from multiple sources.

“Part of the challenge with data is managing all of the numbers and having an adequate cloud system to store and effectively analyze the information,” said farmer D’Arcy Hilgartner of Alberta, who participated in testing the Climate FieldView platform on his operation this season. “The Climate FieldView platform instantly transfers the field data gathered from my farm equipment into my Climate FieldView account, which is especially useful during harvest season because I’m able to see where various crop inputs were used and analyze the corresponding yield. I’ve really enjoyed having this digital platform at my disposal, and I’m excited to see the positive impacts on my business this coming year.”

As Climate continues to expand its digital technologies to help more farmers access advanced agronomic insights, additional new data layers will feed the company’s unmatched R&D engine, ultimately enabling the development of valuable new features for farmers in the Climate FieldView platform.

In August 2017, the company announced the acceleration of R&D advancements through the company’s robust innovation pipeline, along with new product features and enhancements to help farmers manage their field variability more precisely than ever before.

Launched in 2015, the Climate FieldView platform is on more than 120 million acres with more than 100,000 users across the United States, Canada and Brazil. It has quickly become the most broadly connected platform in the industry and continues to expand into new global regions.

Climate FieldView Platform Offering in Western Canada

  • Data Connectivity - Farmers can collect, store and visualize their field data in one easy-to-use digital platform through the Climate FieldView Drive, a device that easily streams field data directly into the Climate FieldView platform. FieldView Drive works with many tractors and combines across Canada, in addition to anhydrous applicators and air seeders, helping farmers easily collect field data for the agronomic inputs they manage throughout the season. Recently, The Climate Corporation announced a new data connectivity agreement with AGCO, providing more farmers even more options to connect their equipment to the Climate FieldView platform. In addition to the FieldView Drive, farmers can connect their field data to their Climate FieldView account through Precision Planting LLC's monitors, cloud-to-cloud connection with other agricultural software systems such as the John Deere Operations Center, and through manual file upload.
  • Yield Analysis Tools - With Climate’s seed performance and analysis tools, farmers can see what worked and what didn’t at the field level or by field zone, and apply those insights to better understand field variability by quickly and easily comparing digital field maps side-by-side. Farmers can save regions of their fields in a yield-by-region report and can also save and record a field region report through enhanced drawing and note taking tools, retrieving the report at a later date for easy analysis on any portion of their field to better understand how their crops are performing.
  • Advanced Field Health Imagery - Through frequent and consistent, high-quality satellite imagery, farmers can instantly visualize and analyze crop performance, helping them identify issues early, prioritize scouting and take action early to protect yield. Climate's proprietary imagery process provides consistent imagery quality and frequency by using high-resolution imagery with vegetative data from multiple images, in addition to advanced cloud identification. Farmers can also drop geo-located scouting pins on field health images and navigate back to those spots for a closer look, or share with agronomic partners.
  • Seeding and Fertility Scripting - Farmers can manage their inputs to optimize yield in every part of their field with manual variable rate seed and fertility scripting tools. Through Climate’s manual seed scripting tools, farmers can easily create detailed planting plans for their fields to build a hybrid specific prescription tailored to their unique goals, saving time and improving productivity. Additionally, Climate offers a manual fertility scripting tool, enabling farmers the ability to optimize their inputs with a customized management plan for nitrogen, phosphorus, potassium and lime tailored to their unique goals.

2018 Availability and Pricing

The Climate FieldView platform is currently available for purchase in Western Canada on a per-acre basis so that farmers can begin using it on their farms in time for the 2018 growing season. To experience the complete value of the platform throughout the entire growing season, farmers should sign up for a Climate FieldView account by Jan. 1, 2018. For more information about the Climate FieldView platform and pricing, contact Climate Support at 1.888.924.7475 or visit
Published in Precision Ag
The harvest of 2016 left many fields deeply rutted from combines and grain carts running over wet land. Many farmers had little choice but to till those direct-seeded fields in an attempt to fill in the ruts and smooth out the ground. But where it was once heresy to till a long-term no-till field, a few tillage passes won’t necessarily result in disastrous consequences.
Published in Tillage
Rye’s weed-fighting skills along with its cover crop benefits make it a particularly good companion crop for soybeans.

“Soybeans and rye complement each other really well,” says Mike Ostlie, agronomist at the North Dakota State University’s Carrington Research Extension Center. “Rye adds a lot of things to soybeans that really complete a good production system. You can use rye as a weed-management tool because it suppresses weeds that are becoming increasingly resistant to glyphosate.” READ MORE
Published in Soybeans
Soil phosphorus (P) occurs in many inorganic and organic forms. Only a very small portion of inorganic soil P is available for plant uptake, with none of the organic forms taken up directly by plant roots. Phosphorus is the most challenging of all the plant nutrients to understand, as it can occur in numerous inorganic and organic forms, and its availability is strongly influenced by various soil chemical and physical factors.
Many farmers have witnessed the value in applying herbicides in the fall to perennial weeds, especially perennial sow-thistle and dandelion. Often they will see a reduction in their population the next year as well as a delay in their shoot emergence. This allows the planted crop to have a competitive advantage over those perennial weeds. Unfortunately weather conditions around the time of application can be quite variable and can influence a herbicide’s effectiveness.

Click here to read more and for three top tips to make the most of this application window.
Published in Weeds
Invasive plant species can pose a serious problem for farmers. The lack of native competitors or predator species often allows invaders to spread virtually unchecked, so a minor challenge can quickly become a major problem facing farmers across a large area. With a lot of time, effort and resources, the spread of some invasive plants can be checked and in some instances, the plants can be entirely eradicated from an area.
Published in Weeds
A few growers in Saskatchewan are adopting intercropping systems as a way to improve yields and revenue over monocropping. Researchers at the South East Research Farm (SERF) in Redvers, Sask., are helping growers address some of their intercropping questions through small plot research and replicated trials, including demonstrations and evaluations of the potential of various crop combinations.
Published in Seeding/Planting
Weeks of heavy rain and snow at harvest last fall left western Canadian farmers carrying a devastating 2.5 million acres of field crops unable to be harvested. Though that scenario is an extreme, climate change means anomalous weather may be our new normal. Successful farmers expect the unexpected and know planning in advance for adverse conditions can make a huge difference in ultimate crop returns. With excessively wet weather the reality throughout much of the season for many Ontario producers, at least some growers are already asking how they might minimize moisture-induced harvest losses if the wet weather continues.
Published in Harvesting
Blackleg levels on the Prairies have been going up, but research information on blackleg races and cultivar resistance, plus a new cultivar labelling system and a new diagnostic test, can help bring those disease levels back down.
Published in Diseases
Several soybean farmers have contacted Michigan State University Extension regarding premature yellowing of soybeans. The symptoms observed were yellowing along leaf margins followed by scorching and dieback.

Most of this damage was reported from areas that encountered some droughty conditions in 2017. Although these symptoms appeared to resemble that of potassium (K) deficiency at first glance, other factors such as herbicide injury, foliar diseases, compacted soil and root injury could cause similar symptoms to appear. READ MORE
Published in Soybeans
As problems with Fusarium head blight (FHB) continue to increase on the Prairies, so does the need to deal with Fusarium-infested grain and screenings. Preliminary results from a Saskatchewan study are pointing to a possible way to extract value from these wastes while potentially reducing the risk of spreading the disease.

FHB is a difficult to control fungal disease that affects cereal crops. It reduces crop yield and grade, but its most serious impact is the pathogen’s ability to produce mycotoxins that limit the grain’s use for food and livestock feed. Several Fusarium species can cause the disease; the most common one is Fusarium graminearum. Its mycotoxins include deoxynivalenol (DON), the most common mycotoxin associated with FHB.

“The traditional use for Fusarium-damaged grain is to clean it and then, if possible, blend it with uncontaminated grain for animal feed. Although the limits for Fusarium levels in feed are set, there is some nervousness within the livestock industry that if livestock are continually at that maximum level for years and years, there could be some long-term detrimental effects to animal health. So the livestock industry has been pushing for another disposal option to minimize the risk of damage to the animals,” explains Joy Agnew with the Prairie Agricultural Machinery Institute (PAMI), who led this research.

“At present, if the mycotoxin content of the grain or the screenings is too high to be blended for feed, then usually the material is dumped in the bush, a slough, or a hole in a field. But there is a potential risk of spreading Fusarium with dumping.”

She notes the amount of Fusarium-damaged grain has increased substantially in the last few years, adding: “The Canadian Grain Commission [CGC] estimates that a third of all red spring wheat was downgraded due to Fusarium damage in 2014.” And Fusarium levels were even worse in 2016, with downgrading of nearly half of the red spring wheat samples in the CGC’s harvest sample program.

 As a result, it is increasingly important to find alternatives to dumping and feed blending.

“A lot of research is being done on preventing Fusarium head blight, but not much is being done on how you can extract value from heavily damaged grain and screenings if your crop gets the disease,” Agnew says. Finding ways to add value to these infested materials would help producers deal with some of the economic impacts of FHB, such as extra fungicide costs, poorer yields, higher seed cleaning costs, lower prices for the grain and limited marketing opportunities.

So Agnew initiated a project to evaluate various disposal options to determine their potential for extracting value from the Fusarium-infested materials and for minimizing the spread of FHB. Saskatchewan’s Agriculture Development Fund, under the federal-provincial-territorial Growing Forward 2 program, funded the project. The CGC provided in-kind services.

Seed cleaning options
Agnew and her research team reviewed the literature on seed cleaning options and surveyed Saskatchewan seed cleaners about current practices. They discovered none of the seed-cleaning technologies currently used in Saskatchewan are ideal for dealing with Fusarium-infested grain.

The survey found the most common way for the province’s seed cleaners to remove Fusarium-damaged kernels from grain was to use a gravity sorter as part of a mobile cleaning unit. “A gravity sorter separates seeds based on seed density, but research shows this technology misses some Fusarium-damaged kernels and discards a lot of healthy kernels. However, it’s a low-cost, fairly high capacity method. That is why it is so widely employed,” Agnew says.

More sophisticated technologies like optical sorters or near-infrared transmittance (NIT) equipment were not common in Saskatchewan when Agnew’s group conducted the survey in 2016, but since then, she has heard of several more custom grain cleaners who are now offering these technologies.

Agnew explains that optical sorters evaluate individual seeds and eject the ones that do not fall within a predetermined colour spectrum. However, Fusarium-damaged kernels vary in colour from whitish to black or pink, which complicates and slows the sorting process – especially if the grain is highly infested.

NIT involves sending light through individual kernels and measuring the response to determine the chemical characteristics of the kernels, such as protein content, starch content and hardness. Research shows this technology can remove Fusarium-damaged kernels because it can detect their lower protein content and the presence of DON. Agnew’s survey found NIT technology was not readily available to Saskatchewan farmers. However, some seed cleaners were interested in adding the technology to their mobile seed-cleaning units once NIT becomes more economical and has a higher capacity for sorting large amounts of grain.

Agnew expects the capacities of optical and NIT sorters will likely increase as these technologies advance. She notes a common approach at present is to first clean the grain with a gravity sorter and then use one of these other technologies to further sort the grain. However, this process increases the time and cost per bushel for cleaning the grain.

Disposal options
In 2016, Agnew conducted trials to assess three disposal technologies – burning, composting and anaerobic digestion – in terms of their potential to provide an economic return and their effectiveness in killing the fungus.

“We selected burning because, other than dumping, it is probably the most common way of disposing of Fusarium-infested grain. You can burn it in a grain-burning stove or you can pellet it and then burn it in a pellet stove,” she explains.“We looked at anaerobic digestion because some preliminary work in Europe indicated that digestion might deactivate the Fusarium spores, breaking them down in an oxygen-free environment.

“And we looked at composting because it is a pretty standard method of disposing of organic waste and it is easy to incorporate on to the farm.”

Although the CGC has well-established methods for measuring Fusarium graminearum concentrations in grain, it doesn’t have such methods for measuring mycotoxins in ash, compost and digestate. So, for this project, the CGC developed and validated a specialized method for measuring DON concentrations in these materials as an indicator of the Fusarium level.

All the trials compared wheat samples with high versus low DON levels. In the burning trial, the two types of wheat samples were burned in a grain-burning stove. The CGC analyzed the DON concentrations in the ash. Also, the Alberta Innovates lab in Vegreville assessed the total energy content in the wheat samples.

The anaerobic digestion trial involved 18 vessels, including: six vessels with a manure mixture that included high DON wheat; six vessels with a manure mixture that included low DON wheat; and six vessels with only a manure mixture. In three of the six vessels within each treatment, the liquid at the bottom of the vessel was re-circulated periodically for better contact between the microbes and the substrate. In anaerobic digestion, bacteria convert the carbon in manure and other organic materials into biogas, so biogas production was monitored during the trial. The CGC determined the DON levels in the digestate.

The composting trial included six piles. Two piles had a 50/50 mixture by volume of cow manure and low DON wheat; two piles had a 50/50 mixture of cow manure and high DON wheat; and two control piles had only cow manure. The CGC analyzed the composted material for DON levels.

Agnew’s team also conducted a preliminary economic analysis of the different disposal options.

Surprising results
Based on the results from these trials, anaerobic digestion was the least promising option. It decreased the DON concentration in the digestate, but didn’t eliminate it. On top of that, very little biogas was produced and anaerobic digestion requires special equipment. Overall, this technology does not appear to be practical for farm disposal of Fusarium-infested grain.

In the burning trial, the temperature during burning was estimated to be between 150 C and 300 C. Burning reduced the concentration of DON in the ash but did not eliminate it. Agnew says, “So you can extract energy value from burning Fusarium-damaged grain, but you have to be careful about disposing of the ash because there is still potential for spreading the fungus in that ash.”

Assuming the ash could be properly disposed of, the project’s economic analysis indicated that if highly damaged grain could be purchased for $1 to $3 per bushel, then burning the grain could be a cost-effective way of producing heat compared to traditional fuels.

Composting turned out to be the most promising option. All of the compost samples had undetectable levels of DON, which surprised the researchers. “Composting usually promotes fungal growth. Since Fusarium is a fungus, we hadn’t expected much of an effect,” Agnew says.

She notes, “Our hypothesis is that during the composting process, which heats the compost up to about 60 C to 70 C, it is wet heat and additional microbial activity is happening in the compost pile that somehow eliminates the DON.”

Agnew explains that the cost/benefit of composting strongly depends on the availability of space, a tractor and mixing materials such as manure. “If all of that is available, then composting could be a low-cost option for disposing of Fusarium-infested grain, depending on the availability of a market for the compost and depending on evidence proving that the Fusarium fungus [and not just the DON] is gone from the compost.”

The project’s results show promise for not only extracting value from heavily infested grain but also for minimizing the potential to spread FHB. If Agnew and her CGC colleagues are able to obtain funding to continue this research, the team plans to find a way to directly measure Fusarium levels in compost as part of the research.

“This study revealed some pretty interesting things,” Agnew concludes. “The Canadian Grain Commission was really interested in the results. They are pushing for additional work and to publish the initial results, so we are working with them on that. And the results may also be presented at the World Mycotoxin Forum in 2018 because of the interest in this issue and the fact that no one else has really seen this effect due to composting.”

Common disposal Options for Fusarium-damaged kernels
  • Clean and blend - Traditional use is to clean and blend with uncontaminated grain for animal feed.
  • Dumping - If toxin levels are too high, grain can be dumped in bush, slough or in a hole.
  • Gravity sorter - Seeds are separated based on density. It’s a low-cost, fairly high-capacity method.
  • Burning - The most common method of disposal. Grain can be burned in a grain-burning stove or can be pelleted and burned.
  • Composting  - This is a pretty standard method of disposing of organic waste and it is easy to incorporate on to the farm.
  • Anaerobic digestion - Preliminary work in Europe indicated digestion might deactivate the spores, breaking them down in an oxygen-free environment.
  • Near-infrared transmittance (NIT) - Sends light through individual kernels and measures the response to determine the chemical characteristics of the kernels.
Published in Diseases
Page 1 of 41

Subscription Centre

New Subscription
Already a Subscriber
Customer Service
View Digital Magazine