Machinery

The New Holland T6.175 Dynamic Command tractor was crowned Machine of the Year 2018 in the Mid Class Tractor category at the Agritechnica trade show in Hanover, Germany. The machine received the coveted award for its technical innovation and the benefits it brings to customers, with selection criteria focusing on innovative features, performance, productivity, cost of operation, ease of use and operator comfort.“This award is testament to New Holland’s long-standing leadership of the mixed farming and dairy segment. It is a well-deserved recognition of the hard work and dedication of all those involved in the development of the T6.175 Dynamic Command tractor, who worked tirelessly to produce a tractor that meets the specific requests of our customers,” said Carlo Lambro, President of New Holland Agriculture Brand.In August 2017, New Holland announced it is expanding its acclaimed T6 Series offering with the new T6 Dynamic Command option. These new T6.145, T6.155, T6.165 and T6.175 are the only tractors in the segment featuring a 24x24 semi powershift transmission on the market. They are versatile tractors that will be an asset to the fleets of dairy, livestock, and hay and forage operations.For more information, visit: http://www.newholland.com/na
Producers looking for an affordable vertical tillage tool that sizes and buries residue in the fall or prepares smooth seedbeds in the spring have another option: The new Frontier VT17 Series Vertical Tillage Tool from John Deere.The VT17 Series offers fore and aft leveling adjustments that can quickly be made using a simple crank system. Gang angles on the implement can be adjusted from zero to 12 degrees for less or more aggressive tillage. Operators can fine-tune the machine’s operating depth from zero to three inches using a pin-and-clip adjustment.The VT17 comes with the choice of 20-inch straight or 22-inch concave blades. Each blade type is fluted for improved residue flow, sizing, and mixing, even with aggressive gang settings. The machine’s spring-adjustable rolling baskets run perpendicular to the blade direction to break up clods and improve field leveling and seedbed uniformity.Tandem dual wheels, standard equipment on all VT17 models, are mounted on a tubular carriage frame that’s hydraulically raised and lowered. As an option, an adjustable middle breaker can be mounted between the wheels on the center frame to disrupt soil in the center-line of travel that’s left open where the front and rear gangs do not overlap.Four sizes of VT17 Series Vertical Tillage Tools are available with working widths ranging from 10 to 15 feet. Tractor horsepower requirements range from 85 to 150 horsepower depending on the width of the model it’s paired with.Frontier equipment is available exclusively at your local John Deere dealer. For more information, click here.
May 3, 2016, Ontario – With the recent warm weather, soil temperatures have reached 10 C, which means that now is great time to scout for wireworms and grubs. Wireworm baits will be most effective right now and grubs will also be feeding close the soil surface, according to Tracey Baute in her latest blog. | READ MORE
Mar. 31, 2016 - Much of the tracks-versus-wheels debate on farms has focused on compaction and the ability to drive in wet conditions, but what about differences in fuel consumption? Testing done in southern Manitoba in 2015 confirmed long-standing research showing tracks require less energy to move in field conditions, dispelling a lingering misconception that implements on tracks require more horsepower to pull than wheeled units. Research conducted near Altona — the home of track-maker Elmer's Manufacturing — found fuel savings of 11 to 15 percent when pulling a grain cart on tracks instead of wheels. "We used a grain cart and compared wheels to tracks at the same weights. We tested on fresh tilled ground, tilled and then dried for a few days, untilled canola ground, and concrete for a reference." explains Mike Friesen, general manager and lead engineer at Elmer's. While wheels pulled easier than tracks on concrete, there was less resistance pulling tracks in all three field scenarios. That's because tracks "float" or stay higher on top of the soil, reducing what engineers describe as "rolling resistance." Since tires generally create deeper ruts, they have a greater rolling resistance than tracks on soft soil, as explained by researchers AJ Koolen and H Kuipers in Agricultural Soil Mechanics back in 1983. "In plain English, the tracks don't have to continuously try to get out of the rut they are digging like the wheel does," explains Friesen. Hartney, Manitoba farmer Tim Morden's experience pulling large capacity Bourgault cart on Elmer's TransferTracks supports the findings. "When we had duals on the back of the cart, dirt would build up in front of the wheels and slow it down, making it hard to pull," he says. "This didn't happen with tracks." Morden explains the biggest difference he's noticed with switching to tracks is the reduced compaction and rutting, especially in wet conditions. "The number one fact is it doesn't really leave a rut at any time, unless it's really wet, but it's significantly less than tires," he says. "We have much more confidence on the field with the track." The study also compared energy required to pull Elmer's large tracks versus Elmer's smaller TransferTracks, which concluded that, while both tracks pulled easier than wheels, the TransferTracks required less horsepower at weights below 35,000 lbs per wheel making it the ideal candidate for use with an air-seeder cart, small grain cart or a rolling water/fertilizer tank. The reduced energy requirement not only results in improved fuel efficiency, but it could also allow a grower to optimize their existing horsepower in other ways, such as driving faster or pulling a wider drill with the same tractor during seeding.  
June 26, 2015 - Most of Alberta received isolated rain showers over the past week, which helped previously dry areas and somewhat alleviated moisture stress. However, soil moisture conditions still remain very dry, according to the province's weekly crop report. Surface soil moisture conditions are on par with last week despite the recent rain. Provincially, surface soil moisture conditions are rated as 30 per cent poor, 41 per cent fair, 26 per cent good and three per cent excellent. Dry spring conditions have left little soil moisture reserves, making timely rains critical to enhance crop, hay and pasture development. Provincially, crop growing conditions did not changed significantly from last week and are rated as 18 per cent poor, 44 per cent fair, 35 per cent good and three per cent excellent. Field crops continue to be affected by the dry spring conditions. READ MORE.  
June 15, 2015, Salford, ON - Salford isn't content to grow by acquisition. The rapidly expanding organization will launch several new products from each of its tillage, seeding and fertilizer application divisions. The new product offerings include two new vertical tillage designs, the I-2200 and I-4200; new Flex Finish hydraulically adjustable finishing attachments for the I-Series; the new Salford Valmar 8600 Pull-Type Pneumatic Boom Applicator; and Salford BBI will introduce the Javelin and MagnaSpread Ultra spreaders to the Canadian market at the same time. READ MORE.  
The most advanced grain harvesting technology from front to back is featured in the combines and headers John Deere is introducing for model year 2018 production. This includes four new S700 Combine models (S760, S770, S780 and S790) that offer producers significant improvements in “smart” technology, improved operator comfort and better data, along with the 700C/FC Series Corn Heads and 700D Drapers for more efficient grain harvesting.Building on the proven field performance of the S600 Combines introduced in 2012, the new S700 Combines incorporate the latest in automated harvesting technology. Many of these changes make it easier on the operator by allowing the combine to make needed adjustments automatically, on the go.To make it easier for operators to maximize the performance of their new S700 Combine, John Deere introduces the Combine Advisor package. Combine Advisor incorporates seven technologies to help operators set, optimize and automate the combine for the most effective harvesting performance based on their crop and field conditions.Auto Maintain is a function within Combine Advisor that is supported with ActiveVision cameras.Another addition to the S700 Combines is Active Yield technology that automatically calibrates the mass flow sensor. This saves time by eliminating the need for manual calibrations and ensures the best data is collected.The biggest physical difference customers will see in the S700 Combines compared to previous models is in the cab. This starts with a new state-of-the-art CommandCenter, providing a common user experience across Deere’s larger tractor and self-propelled sprayer lines, that emphasizes customization and operator comfort.Machine performance features of the CommandCenter include a Gen 4 interface and monitor with 4600 processer; CommandArm and multi-function control lever with greater ergonomic design and customizable buttons; premium activation with AutoTrac, RowSense and HarvestDoc; and Extended Monitor and mobile device features. In addition, operators will find set up and start up much quicker and easier, thanks to more intuitive harvest run and setup screens.The new cabs feature either leather or cloth seats that swivel 7.5 degrees left and 15 degrees right for improved visibility; enhanced seat ventilation for greater comfort; improved seat cushion with optional leather seat; and additional grain tank mirrors for improved visibility of the grain tank.New corn head and platform, tooAlong with the S700 Combines, John Deere is introducing the 700C/FC (folding corn head) Series Corn Heads with the RowMax row unit. The RowMax row unit provides up to a 50 percent increase in the life of the row unit gathering chains and features solid-alloy bushings that reduce pin and bushing wear.The 700C/FC Series Corn Heads are available in 6- to 18- row models, in 20-, 22- and 30-inch row widths. The StalkMaster stalk-chopping option is available on all models. Folding corn heads are available on 8- and 12-row units, which allow operators to spend more time harvesting and less time and hassle disconnecting, trailering and reconnecting heads when moving from field to field.For corn growers harvesting high moisture corn, there are several enhancements available specifically tailored to better handle this demanding crop. High moisture corn enhancements on the corn head include an auger floor insert to ease crop handling and a lower auger height to minimize crop damage.For small grains, Deere introduces the 700D Rigid Draper, which provides a 20 percent increase in capacity in tough harvesting conditions over the previous model. The 700D features a top crop auger that’s 50 percent larger in diameter (now 18 inches) with heavy-duty drives, high-performance gauge wheels, and a new center section seal kit that reduces center section grain losses by up to 45 percent in canola.For more information on the new S700 Combines, 700C/FC Corn Heads, 700D Rigid Draper and other harvesting solutions from John Deere, see your local John Deere dealer.
New Holland Agriculture has set a new World Record by harvesting 16,157 bushels of soybeans in eight hours with the CR8.90 combine. The record-breaking performance, which took place in the Bahia State of Brazil, was certified by independent adjudicator RankBrasil. The performance On record setting day, harvesting started at 10:30 am and finished at 5:30 pm, having harvested approximately 222 acres (90 hectares). CR8.90’s average throughput was 2,020 bushels/hour in a crop yielding an average of 72.6 bushels/acre, and 17 per cent average moisture content. The record-setting performance and efficiency was achieved by harvesting 73.5 bu of soybean per gallon of fuel. The CR series The CR8.90 follows the footsteps of the range topping CR10.90, which proved it is the world’s highest capacity combine when it captured the World Record for harvesting an impressive 29,321 bushels of wheat in eight hours in 2014 – a title it holds to this day. For more information on the CR series, click here.
Jan. 8, 2016 - XiteBio PulseRhizo now replaces previously registered XiteBio PeasRhizo, expanding on an enhanced label. PulseRhizo features the following enhancements: product use expanded to include faba bean on-seed compatibility with most popular seed treatments extended to 48 hours application methods expanded to include in-furrow as well as on-seed treatment XiteBio PulseRhizo works to invigorate the natural microflora in the soil while also adding fresh rhizobia for optimum nitrogen fixation. According to XiteBio Technologies Inc., PulseRhizo, the liquid inoculant for pea, lentil and faba bean, enhances crop performance and nodulation while maximizing yield. Along with XiteBio SoyRhizo, a liquid inoculant for soybean, XiteBio PulseRhizo is becoming the outstanding option for producers, exclusively available from XiteBio and its North American distributors and dealers.    
Combine header selection is just one of many factors growers have to evaluate when considering straight cutting canola. In a three-year project launched in 2014, researchers in Saskatchewan are evaluating different header types to find out whether or not there are differences in headers and what factors make a difference. The project started in 2014 at two locations in Saskatchewan: Agriculture and Agri-Food Canada’s (AAFC) Indian Head Research Farm/Indian Head Agricultural Research Foundation (IHARF); and Swift Current, at the Wheatland Conservation Area’s (WCA) southwest Agricultural Applied Research Management (Agri-ARM) site. A third site was added in 2015 at the Prairie Agricultural Machinery Institute (PAMI) site in Humboldt. “We are using full-scale machinery and very large replicated plots for the trials,” explains Nathan Gregg, project manager with PAMI. “The combine is a CR 9080 and header widths are 35 or 36 feet, depending on the treatment, with individual treatments about 80 feet wide and 400 to 1000 feet long. The project is focused on combine header performance, not optimal combine performance, so we are using a fixed ground speed and other settings for better comparison between headers.” The four harvest treatments include swathing and belt pick-up as a control compared to a draper header, which is fairly common throughout the Prairies, a rigid auger header and a new style header (Varifeed) with an extendable knife. “The Varifeed header style has been used in Europe for a few years and is starting to be used in Western Canada,” Gregg says. “This header has an extendable cutter bar that can be moved forward about 23 inches. The one we are using in the project is hydraulically activated and can be moved from the cab, while there are other fixed attachment options that have fixed extensions.” Two canola varieties are being compared, standard hybrid variety InVigor L130, and shatter resistant variety InVigor L140P. In 2015, Dekalb 75-65 RR was added to the treatments. Factors such as yield, header loss and loss location, environmental shatter loss and various quality components will be measured. Although there are still two more years of data collection for the project, preliminary observations from the 2014 harvest so far aren’t showing any clear differences between the headers. “We are trying to evaluate specific treatments to determine if one header performs better than the others,” Gregg says. “However, in terms of yield in year one, we didn’t see any significant differences between harvest treatments. We measured header losses through the use of pans for shatter loss and throw-over from the header, and again the performance was very similar with relatively low losses. The Varifeed appears to show some advantage, although we need more data. It appears that the extended knife may be able to collect shatter losses induced by the reel a little better and may provide for smoother crop flow.” Researchers also tried to identify the location of the header losses by putting pans across the width of the header and into the zone just beyond the header into the adjacent crop. As expected, most of the shatter losses were concentrated at the perimeter of the header around divider points. Gregg says preliminary findings validate the assumption that the divider point contributes a good portion of shatter losses, while the reel isn’t contributing as much loss as initially anticipated. “We need to investigate further why we are tending to see a higher proportion of the losses at the divider and perimeter, and again near the centre of the header as the material moves into the feeder house.” Header dividers are of interest so the project researchers compared powered side cutters including a vertical knife on some configurations and a rotary knife on others. In 2015, passive end point dividers have been added to the treatments. “In 2014, we did see losses increase at the edges of the header,” Gregg explains. “The powered knife may be causing higher losses because sometimes whole pods and branches are lost compared to a passive divider that may shake the plants and cause a few pods to open. Although this is fairly common in swathers, the powered knives may be causing some additional losses, particularly in drier conditions.” Environmental shatter losses were also measured by putting out pans in adjacent crop at the same timing as the swathing treatment. The pans were collected just prior to straight cutting harvest treatments. The varieties performed fairly similar across all treatments, except at Indian Head in 2014 where a significant wind event caused substantial losses in the standard hybrid as compared to the shatter resistant variety. In those trials, the control swathed and combined standard hybrid plots out-yielded the other standard plots by about four bushels per acre. The shatter resistant variety performed well in all harvest treatments, with no significant difference in yield. “We expect to be able to provide more details at the end of the three-year project and provide some recommendations to growers,” Gregg says. “At this point, although we may find some differences in headers, any slight advantages may be marginalized relative to all of the other decisions and management practices that growers use. One header might reduce losses by a couple of bushels. However, losses overall may be reduced by properly timing harvest activities, making sure plant densities are optimized and other good agronomic practices that produce a good even high yielding stand.” Gregg notes there are generally intrinsic risks and losses with both systems and it comes down to which ones you want to manage and which ones fit your farm. “Straight cutting is just another tool in the toolbox, and works for some people on some farms in some years,” Gregg adds. “There is a whole management aspect of straight cutting that needs to be considered along with all of the other factors in a compressed harvest window.” A farm with a lot of combine power and labour availability might find straight cutting a good option because crops can be combined the day they are ready. However, growers have to be patient and may have to wait a bit later in the season. On the other hand, a smaller operator with limited combine capacity and limited labour may want to include swathing to spread out the already compressed harvest window. Preliminary project results will be presented over the winter at various extension events, and the straight cutting research will be included in upcoming 2016 field days. Once the project is complete, an economic analysis will be completed with final project results available in early 2017. The project is jointly funded by SaskCanola, Saskatchewan Ministry of Agriculture and the Canada-Saskatchewan Growing Forward II Bilateral Agreement, and the Western Grains Research Foundation.  
Aug. 25, 2015, Olathe, Kansas – John Deere is helping customers improve productivity and profitability during harvest with enhancements to its grain harvesting equipment lineup. For model year 2016, the company is adding performance boosting features to its S-Series Combines, 600C Series Corn Heads and 600F HydraFlex Draper Platforms, as well as introducing a new 12-row folding corn head. Jon Gilbeck, division marketing manager for John Deere Harvester Works, says these are some of the most extensive updates to John Deere harvesting products since the introduction of the S-Series Combines years ago. "We are constantly listening to our customers and looking for ways to boost their grain harvesting productivity by improving the performance, quality, and technology of the Deere equipment they are using. This includes enhancements to the combines as well as improvements to the different headers and platforms in the lineup." S-Series Combine Updates John Deere is making some significant improvements starting with the workhorse of its grain harvesting equipment – the S-Series Combine. Internally, customers will notice a 12 percent larger cleaning sieve and a new shoe drive system with a beefed up, wider belt with double the tensile strength and durability. In shoe-limited conditions this new Dyna-Flow Plus cleaning system increases combine capacity up to 10 per cent in corn and 13 per cent in wheat and canola and reduces tailings as much as 28 per cent. The combines are designed with stronger internal bearings, pulleys and support structure for increased durability and uptime. In addition, John Deere is making Active Terrain Adjustment available as a factory-installed option for all 2016 models of S-Series Combines. Active Terrain Adjustment automatically controls the fan speed and sieve/chaffer openings as the combine travels up and down hilly terrain. This optimizes the harvesting performance of the combine and minimizes grain loss on slopes. On uphill slopes of 12-16 degrees the results can be a US$32-64 savings per acre while reducing tailings by as much as 35 per cent. And when harvesting on declining slopes, the greater the slope and greater reduction in foreign material. To improve accuracy and reliability of yield data collected during harvest, John Deere introduces Active Yield with automated calibration. This feature greatly reduces the time operators spend calibrating the yield monitor and provides more accurate yield data from field to field. Active Yield is available as a field-installed attachment for 2016 S-Series Combines and is compatible with earlier model S-Series machines. Lastly, John Deere has added an onboard air compressor to new 2016 combines. This addition makes routine combine cleaning and maintenance more convenient, especially when operators are in the field or remote locations. "These enhanced features make the S-Series Combines even more productive when harvesting all types of grain crops, provide more accurate yield information, and allow operators to spend more time harvesting and less time with calibration and maintenance," Gilbeck says. New in Headers and Platforms Along with the updates to the S-Series combines, John Deere is expanding its lineup of 600C Series Corn Heads and updating the 600F HyraFlex Draper Platforms. For the first time, the company is offering a folding 12-row corn head (612FC model). The 612FC can provide productivity of up to 30 acres more per day versus harvesting with a traditional eight-row corn head and six more acres per day versus a traditional 12-row while reducing operating costs by 15 per cent. And John Deere is equipping all 600C corn heads with an improved row unit slip clutch and drive shaft interface for longer life when harvesting today's more robust hybrids. For soybean and small grain producers, the company has taken many of the features unique to the recently introduced 645FD and built them into other models of HydraFlex Drapers, including the 630FD, 635FD and 640FD. These features include new streamlined end dividers that reduce grain loss and crop knock down; a wider center-feed section that increases material feeding by 15 per cent to better match combine capacity; and 30 per cent stronger reel fingers for greater durability and improved crop pickup. "These improvements, along with doubling the life of the reel finger support tube bearings on all HydraFlex Drapers, help producers harvest more acres per day with less downtime and lower cost of operation," Gilbeck adds. "Collectively, the changes we made to the combines, corn heads and HydraFlex Drapers provide customers with the most advanced harvesting equipment available."  
Feb. 9, 2015 - Alberta's new Farm Implement and Dealership Act will continue to ensure Alberta farmers are treated fairly when purchasing and maintaining farm equipment, according to the province's Farmers' Advocate Office (FAO). "The Farm Implement and Dealership Act helps protect the investment that Albertan farmers make in farm implements by establishing minimum requirements for sale agreements, warranties and the availability of spare parts," Jeana Les with the FAO says. "The Act also provides a mechanism for resolving disputes regarding farm implements." The new Farm Implement and Dealership Act is a blended act combining the old Farm Implement Dealerships Act and the Farm Implement Act. The two acts were combined on December 17, 2014, when Bill 6, the Statutes Amendment Act, received royal assent. Bill 6 also includes numerous changes to sections of the former Farm Implement Act. "The revised statute addresses gaps in the legislation and adds more clarity. This legislation has been around since the mid-1960s and, like any good legislation, it needs to keep evolving to meet the realities we're facing. We've also taken this opportunity make our Farm Implement and Dealership Act more consistent with equivalent legislation in Saskatchewan, Ontario and Manitoba." As the administrator for the Farm Implement and Dealership Act, the FAO provides support to the Farm Implement Board, employs a farm implement inspector, and manages licensing for dealers and distributors. The Farm Implement Board is comprised of three farmers, three industry representatives, and one member appointed by the Minister of Agriculture and Rural Development. "The FAO strives to resolve complaints through the Farm Implement Inspector to help limit costs and ensure expediency for affected farmers," said Les. "In 2013-14, the farm implement inspector spoke with approximately 240 different farmers and agri-business owners, mediated 155 disputes and completed over 20 farm implement inspections. As a result, the Farm Implement Board did not need to review any disputes in 2013-14." More information on these changes is available on the FAO website. The new legislation will come into force in 2015, once the required amendments to the regulation are completed to align with the amended legislation. Updated copies of the Farm Implement and Dealership Act will also be available on the FAO website once they become available.    
A scientist from Agriculture Canada and an engineer from the University of PEI are teaming up on a project they hope will revolutionize how farmers deal with weeds in their fields. Their idea is to mount a camera and sensors on a sprayer.It then uses software to identify what's a plant and what's a weed and turn the sprayer on and off to target the weeds. This summer's work was the start of a five-year project, researchers are hoping to do field-scale demonstrations by year three. READ MORE
For the tractor-mounted sprayer market for 2017, John Deere introduces the Frontier LS11 Series 3-point Mounted Sprayers. These economical, efficient sprayers are ideal for making spray applications to pastures, small or large fields, road ditches, fence rows, specialty crops and for other types of crops and field uses.The LS11 Series Sprayers have many features of the larger pull-type sprayers, including breakaway booms, manual and automatic controls and optional foam marker systems, that help operators reduce skips and overlaps.The Frontier LS11 Series Sprayers come in four different boom-width models, from 25-ft. to 40-ft., that customers can select from based on their application needs. The LS11 Series Sprayers are available in two tank sizes, 250-gallon or 300-gallon; can be powered either hydraulically or by the rear power take-off (PTO); and are Category 2 or Category 3 quick-hitch compatible. For greater convenience, the heavy-duty poly tanks are specifically designed with a tear-drop shape to allow liquid to more completely drain from the sprayers.Additional standard features of the LS11 Series Sprayers include a handheld spray wand to reach small or hard-to-access areas; integrated parking stand and fork-lift pockets to make hook up, moving and loading the sprayer easier; and wet booms that extend the life of sprayer hardware. All models come with a single nozzle body; however, a triple nozzle body is available on the 40-ft. boom sprayer.For more information on the new Frontier LS11 Series 3-point Mounted Sprayers from John Deere, see your local John Deere dealer.
Spraying chemicals has expanded far beyond in-crop herbicides to include fungicides, pre-harvest, and other late season applications in many fields. Challenges arise as growers transition to spraying at different times of the year and into different crops, canopy heights and densities.
June 15, 2016 - Salford Group unveiled what it says is the largest pull-type pneumatic boom applicator on the planet. The whopping prototype is being shown for the first time in public at Canada's Farm Progress Show this week in Regina.
June 17, 2015, Regina, SK – Pesticide application has never been more important in Canada. Today's operators need to understand more than just how to operate a sprayer - one of the most complex and expensive agricultural machines. They also need to balance how weather, chemistry, plant canopies and many other factors affect performance and environmental fate. To help make sense of it all, a new website, www.sprayers101.com, has been launched by two Canadian sprayer specialists. "Applicators want to do the best job possible, and are always looking for information and advice," says Dr. Jason Deveau, application specialist with the Ontario Ministry of Agriculture, Food, and Rural Affairs. "We recognized a need to provide that information more effectively. That's why we developed a site that combines horticultural and field crop information." Dr. Tom Wolf is a sprayer specialist based in Saskatoon with over 25 years of research experience in field sprayers. His company, Agrimetrix Research & Training, reaches thousands of applicators across Canada through presentations and workshops. "Each year, producers spend more time in their sprayers than almost any other piece of equipment. Most of my clients' fields are now treated three to five times per year. The investment, and the stakes, are high," says Wolf. "Applicators deserve the best information on how to maximize pesticide performance and minimize environmental impact. Sprayers 101 is the ideal means to provide that information." Deveau and Wolf use a variety of approaches to get their message out, relying on Twitter to invite applicators, agronomists and educators to Sprayers101. Facts, often spiced with humour, are delivered via stories, images, videos and apps. International sprayer specialists have begun submitting information for posting on the site, creating an unparalleled resource for all things "sprayer." The site is mobile-friendly and scales to the phones that applicators rely on for information gathering.  
Agrifac, a Dutch manufacturer of self-propelled sprayers, is expanding into Canada. Agrifac has 30 years of experience in designing and manufacturing self-propelled sprayers. The company gives primary attention to an accurate spray application: "Every drop hits the right spot." Boom stability as well as techniques to increase the coverage of the crops are available on the machines of Agrifac. Agrifac offers two types of self-propelled sprayers: the Condor and the Condor Endurance. The Condor is a versatile, high-quality sprayer suitable for demanding farmers. The Condor Endurance is the Condor's big brother, a reliable, high quality sprayer with extreme durability. For more information, visit http://www.agrifac.com/condor.  
Growers now have a new option to access and manage their irrigation system from anywhere at any time. Reinke introduces RC10, a remote monitoring device providing advanced control options for improved irrigation management and better overall water management.“When we talk with growers about their irrigation system needs, saving time and increasing efficiencies and productivity are often at the top of the list,” said Reinke President Chris Roth. “RC10 is designed to address these needs and more with its ease of use and advanced command and control capabilities.”RC10 is cellular or satellite based, providing 24/7 mobile access from anywhere. Growers can monitor and control their irrigation system using the advanced control features such as sector, end gun and auxiliary programming.The device is the latest addition to the ReinCloudÔ platform, Reinke’s ag data service. ReinCloud allows growers to manage and monitor their irrigation system, analyze soil moisture data, check the weather and more from a single mobile web application. Through the platform, irrigation system data is collected, stored and analyzed for the grower. Growers can organize their operation by property, zone and equipment, making it easier to quickly gain access to control and monitor their ag-based equipment.RC10 is housed within Reinke’s patented, double wall tower box and can be mounted at the main control or end of the system. The device is compatible with most irrigation systems.Reinke RC10 is now available through Reinke dealers. For more information on RC10, visit www.reinke.com.
Plant-based sensors that measure the thickness and electrical capacitance of leaves show great promise for telling farmers when to activate their irrigation systems, preventing both water waste and parched plants, according to researchers in Penn State's College of Agricultural Sciences.Continuously monitoring plant "water stress" is particularly critical in arid regions and traditionally has been done by measuring soil moisture content or developing evapotranspiration models that calculate the sum of ground surface evaporation and plant transpiration. But potential exists to increase water-use efficiency with new technology that more accurately detects when plants need to be watered.For this study, recently published in Transactions of the American Society of Agricultural and Biological Engineers, lead researcher Amin Afzal, a doctoral degree candidate in plant science, integrated into a leaf sensor the capability to simultaneously measure leaf thickness and leaf electrical capacitance, which has never been done before.The work was done on a tomato plant in a growth chamber with a constant temperature and 12-hour on/off photoperiod for 11 days. The growth medium was a peat potting mixture, with water content measured by a soil-moisture sensor. The soil water content was maintained at a relatively high level for the first three days and allowed to dehydrate thereafter, over a period of eight days.The researchers randomly chose six leaves that were exposed directly to light sources and mounted leaf sensors on them, avoiding the main veins and the edges. They recorded measurements at five-minute intervals.The daily leaf-thickness variations were minor, with no significant day-to-day changes when soil moisture contents ranged from high to wilting point. Leaf-thickness changes were, however, more noticeable at soil-moisture levels below the wilting point, until leaf thickness stabilized during the final two days of the experiment, when moisture content reached 5 percent.The electrical capacitance, which shows the ability of a leaf to store a charge, stayed roughly constant at a minimum value during dark periods and increased rapidly during light periods, implying that electrical capacitance was a reflection of photosynthetic activity. The daily electrical-capacitance variations decreased when soil moisture was below the wilting point and completely ceased below the soil volumetric water content of 11 percent, suggesting that the effect of water stress on electrical capacitance was observed through its impact on photosynthesis."Leaf thickness is like a balloon—it swells by hydration and shrinks by water stress, or dehydration," Afzal said. "The mechanism behind the relationship between leaf electrical capacitance and water status is complex. Simply put, the leaf electrical capacitance changes in response to variation in plant water status and ambient light. So, the analysis of leaf thickness and capacitance variations indicate plant water status—well-watered versus stressed."The study is the latest in a line of research Afzal hopes will end in the development of a system in which leaf clip sensors will send precise information about plant moisture to a central unit in a field, which then communicates in real time with an irrigation system to water the crop. He envisions an arrangement in which the sensors, central unit and irrigation system all will communicate without wires, and the sensors can be powered wirelessly with batteries or solar cells."Ultimately, all of the details can be managed by a smart phone app," said Afzal, who studied electronics and computer programming at Isfahan University of Technology in Iran, where he earned a bachelor's degree in agricultural machinery engineering. He is testing his working concept in the field at Penn State.Two years ago, he led a team that won first place in the College of Agricultural Sciences' Ag Springboard contest, an entrepreneurial business-plan competition, and was awarded $7,500 to help develop the concept.Growing up in Iran, Afzal knows water availability determines the fate of agriculture. In the last decade, the Zayandeh River in his home city of Isfahani has dried up, and many farmers no longer can plant their usual crops. "Water is a big issue in our country," said Afzal. "That is a big motivation for my research."Afzal's technology is very promising, noted Sjoerd Duiker, associate professor of soil management, Afzal's adviser and a member of the research team. Current methods to determine irrigation are crude, while Afzal's sensors work directly with the plant tissue."I believe these sensors could improve water-use efficiency considerably," Duiker added. "Water scarcity is already a huge geopolitical issue, with agriculture responsible for about 70 percent of world freshwater use. Improvements in water use efficiency will be essential."In a follow-up study, Afzal has just finished evaluating leaf sensors on tomato plants in a greenhouse. The results confirmed the outcomes of the just-published study. In his new research, he is developing an algorithm to translate the leaf thickness and capacitance variations to meaningful information about plant water status.
If you leave your pivot exposed all through the winter, you’re going to be working on it a lot longer in the spring,” says Jeff Ewen, an irrigation agrologist with the Saskatchewan Ministry of Agriculture in Outlook, Sask. To help producers prevent damage from winter’s storms and bone-chilling temperatures, Ewen offers a number of winterizing tips.
Apr. 21, 2016 - Deciding on the correct water application solution is vital to your center pivot's performance. Here are three questions you need to ask yourself before picking out a sprinkler package with your dealer. 1. What is your soil type and texture? Proper sprinkler design and selection helps reduce soil sealing with medium to heavy soils.2. What crops are you growing? A significant challenge with sprinkler head design is its ability to penetrate the crop canopy.3. What does your field's terrain look like? The slope of your field must be considered when choosing sprinklers to minimize runoff and ​to keep water where it does your crop the most good. By using your answers to these questions, you will be prepared to work with your dealership's water application experts to help determine how best to reduce energy cost, save water on your farm, and maximize your profitability. For more information on sprinkler packages and water application solutions, get your free eBook 8 Tips to Accurately Check Your Center Pivot Sprinklers.    
  Every 15 minutes, 685 kilometres out in space, the National Aeronautics and Space Administration (NASA) satellite known as SMAP (Soil Moisture Active Passive) records the earth’s soil moisture and temperature. NASA then uses that data to produce the most accurate maps of global soil moisture, temperature and freeze-thaw states ever created with data from space. Agriculture and Agri-Food Canada (AAFC), Environment Canada and university scientists are assisting NASA in validating SMAP soil maps. AAFC is also producing higher resolution soil moisture maps from the Canadian RADARSAT-2 satellite. The maps from SMAP and RADARSAT-2 are valuable tools that help improve people’s understanding of the processes affecting weather and climate. This, in turn, can help agricultural production. “Soil moisture is an important variable in the development of extreme events,” says Heather McNairn, the AAFC team lead and a research scientist for geomatics and remote sensing in Ottawa. “If we don’t have enough water in the soil, drought can develop; if we have extended periods of wet soils, it puts us at risk of flooding.” This is where the information from SMAP and RADARSAT-2 comes in. It reveals how much moisture is in the soil so scientists – and producers – can understand the risks for drought or flooding. “Knowing how much water is available in the soil can help us understand drought risk, where drought might be developing and how severe the drought might be,” McNairn says. “If we can measure how much water is in the soil, we can determine if the soils have enough reserve space to absorb spring snow melt and rainfall. If the soils are saturated, they are unable to accommodate additional water and this tells us the risk of flooding is high.” From an agricultural perspective, monitoring soil moisture will enable the sector to better mitigate agricultural risks regionally and nationally. It will also help Canadian producers make informed decisions for their farm operations based on changing weather, water and climate conditions. For example, producers could use the data to determine their variable rate irrigation needs. Environment Canada will use data from SMAP for improved weather forecasting since the amount of water in the soil significantly affects temperature and rainfall forecasts. “We don’t currently have good data on soil moisture across Canada,” McNairn says. The data will also help researchers outside of Canada, such as in Chile where agronomists are looking at variable rate irrigation. “Producers don’t know how to variably apply water because they don’t know where the moisture is in their fields,” McNairn says. She is assisting researchers in Chile to integrate soil moisture maps from SMAP and RADARSAT-2 into their variable rate irrigation practices. While NASA launched SMAP in January 2015, AAFC began working with the space agency three years earlier. That’s when an AAFC team from Ottawa and Winnipeg took part in SMAPVEX12, a six-week field-testing campaign that involved government and university scientists collecting soil and plant measurements in southern Manitoba while NASA flew two aircraft equipped with the same sensors as the SMAP satellite. The measurements from that mission were then used to calibrate and validate the processing models NASA was planning to use with SMAP. During the SMAP mission, which is expected to run at least three years, AAFC will provide NASA with data from its network of 12 soil monitoring stations in Manitoba and five in Ontario, all installed at private farm sites. The SMAP team will use this data to assess the accuracy of SMAP’s soil moisture products. The 2012 SMAPVEX experiment used data from NASA aircraft to simulate what soil moisture maps from SMAP would look like. Now that SMAP is launched, NASA is returning to Manitoba this year for a second experiment. SMAPVEX16 will validate actual data from the satellite, and NASA will use what is learned during SMAPVEX16 to improve its models and SMAP’s global soil moisture maps. Canada also collects data from its own satellite, RADARSAT-2, to produce soil moisture maps at resolutions higher than those produced by SMAP. These methods will be carried forward and used with Canada’s next generation of satellites, the RADARSAT-Constella­tion scheduled to launch in 2018. With this Constellation, data for use in soil moisture mapping would be available from three satellites. “SMAP and RADARSAT-2 can work together to provide a range of soil moisture products,” McNairn says. The SMAP sensor provides very coarse resolution images covering approximately 1,000 kilometres, which are very good for large scale forecasting of weather and floods, but not detailed enough for field scale mapping. This is where higher resolution data from RADARSAT-2 can help. Scientists are validating the maps from SMAP and also tackling how to downscale SMAP data to improve the resolution of soil moisture maps from this NASA satellite. Downscaled SMAP soil moisture products would provide producers with better data for use in variable rate irrigation and determining the disease risk at the field level. For example, “the risk of some crop diseases increases if the soil is wet for many days,” she explains. “The temporal persistence of wetness tells about risks and if we can determine this risk, this information will help producers make decisions in managing this risk.” For now, it’s exciting that NASA is providing soil moisture maps for the whole world every three days, McNairn says. “We couldn’t do that without satellites.”  
Mar. 21, 2016 - Alberta Agriculture and Forestry (AF) undertakes a number of research projects to ensure the quality and safety of land, air, and water for our food producers. Although long-term monitoring shows the overall quality of Alberta's irrigation water is good or excellent, a study is currently underway to use DNA fingerprinting techniques to determine the sources of contamination of irrigation water. While there are no current concerns, this is an opportunity to improve water quality for the future. The Water Quality Section of AF is currently working with the Taber Irrigation District on a pilot study to understand the sources of E. coli in irrigation water. The study is funded by Growing Forward 2, a federal-provincial-territorial initiative. The District has made water quality a key part of their mandate to ensure farmers are growing the best quality crops. Often, irrigators are required to have water quality tests completed to market their produce, and with recent changes in regulations in the United States (US), this need may increase. In the US, the Food Safety Modernization Act requires testing of water that is used to irrigate fruits and vegetables which are consumed raw. These regulations may affect Alberta producers with irrigated crops destined for export to the US. This study will assist in identifying opportunities to continue to improve water quality, and help producers meet their food safety requirements for the global marketplace. The key item being measured in the study is E. coli. Generic E. coli are present in the intestines of most people and animals, and are excreted in feces. E. coli are therefore used to measure fecal contamination in water. The testing is complicated, as there are "naturalized" E. coli that occur in the environment and are not indicative of fecal contamination. "Research gives us a better understanding on the amount of fecal and naturalized E. coli in irrigation water. The discovery of naturalized E. coli is very important because food safety is concerned about fecal contamination. If we find E. coli in water, we need to determine whether it is fecal or naturalized, which then determines if there is a food safety concern or not," says Andrea Kalischuk, director of water quality, AF. "Our study in the Milk River area showed cliff swallows and cattle contaminated some of the water, but a significant proportion of naturalized E. coli was also observed" says Kalischuk. Whatever the study identifies as a source of contamination, the research team and irrigation district will need to work with producers to seek a balanced solution that supports both the agriculture industry and wildlife habitat, while meeting food safety requirements. This is the final year of a three-year study, and a summary report will be shared with producers on AF's website in the fall of 2017.  
In a presentation to the House of Commons Standing Committee on Transport, Infrastructure and Communities, the Alberta Wheat Commission (AWC) urged the quick passage of Bill C-49 – historic federal legislation that promises to provide long-term solutions to Canada’s grain transportation issues which have plagued the industry for decades.AWC’s presentation also recommended amendments to the legislation that would improve the effectiveness of long haul interswitching as a tool to improve railway competition. As currently proposed, AWC believes the new interswitching provisions may be less effective than those enacted under the former Bill C-30.Overall, AWC is pleased with measures in Bill C-49 – the Transportation Modernization Act, that will help correct the imbalance between the market power of railways and shippers and ensure that the cost of system failures are not passed down the supply chain to farmers.“AWC appreciates the federal government’s commitment to legislation that will improve railway competition and accountability in Canada,” said Kevin Auch, AWC Chair. “AWC has been pressing for rail reform since our organization began in 2012 and we saw the invitation to speak today as another opportunity to ensure the farmer voice is truly represented as this legislation is developed.”As a member of the Crop Logistics Working Group (CLWG), AWC also supports a series of suggested amendments that deal with more timely reporting of railway service data and requirements that the railways provide more detailed volume forecasts and operational plans to the Minister at the beginning of each crop year. The CLWG is a regular forum for grain industry stakeholders to identify supply chain challenges and commercial solutions aimed at enhancing the transparency and effectiveness of the grain handling transportation system.“We see our membership with the CLWG as an excellent opportunity to pass producer feedback directly to Minister MacAulay as it relates to grain movement by rail,” said Auch. “In providing these amendments, we hope to see long-awaited legislation that fosters growth of the agriculture sector and supports Canada’s reputation as a reliable supplier of grain to our international customers.”AWC encourages the federal government to continue the conversation with Canada’s agriculture sector as it works to develop the regulations to support the spirit and the intention of this legislation that seeks to create a more responsive, competitive and accountable rail system in Canada.
Grain conditioning is a widely used term that can be used to identify situations where either aeration or natural air drying is being utilized. Knowing the difference between aeration and natural air drying will aid in selecting aeration systems, equipment, and storage that will best suit your needs.
Safe storage of grain on farm is a key to successful farm management. Harvested grain may be put into bins at acceptable moisture contents, but is it safe? Knowing what temperature and moisture contents are acceptable is critical for the safe storage of grain. The following information sheds some light on what to watch for in stored grain during springtime conditions. More stored grain goes out of condition or spoils due to lack of temperature control than for any other reason. It cannot be emphasized enough that the control of temperature in a bin of stored grain is absolutely critical. Geographically in Western Canada, we are located in a region where we get North America’s most severe temperature fluctuations from one season to the next. The transition between these extremes can happen rapidly or gradually. It is during these transition periods when stored grain is most at risk, due to a phenomenon called moisture migration. Moisture migration happens inside the bin when the difference in grain temperature and the outside air is the most extreme. Properly drying and cooling your grain in the fall is crucial to preserving grain quality through the fall and winter months, and well into spring. If your grain was harvested in hot, dry conditions in the fall you must be careful to bring down the temperature of that grain to enable safe storage through the winter. Likewise, if due to weather conditions at harvest time you have put your grain in the bin at a higher moisture content than usual, you must also be careful to lower the temperature to a point where you can safely store the grain over the winter. As outside temperatures begin to rise in springtime, continued monitoring of your grain bins is required. In spring, as the ambient temperature of the air outside the bin starts to warm up the bin wall also tends to warm, which in turn warms the adjacent grain. This results in the air adjacent to the bin wall warming up as well. At this point the warm air creates a moisture current that moves upward through the grain on the outside perimeter of the grain mass. As this air warms up and starts to move, it will pick up moisture from the grain and carry it upwards. As the moistened air nears the top of the bin, it moves toward the center where it encounters cooler grain temperatures. This air cools down and starts to move down the center of the bin, laden with the moisture it accumulated during the upwards cycle along the bin wall. During this part of the cycle the air starts to release this moisture. The lower the air migrates in the bin, the more moisture it will give off. Therefore, high moisture due the condensation of the cooling air occurs at the bottom center of the bin. In and around this area of high moisture you can expect grain spoilage to occur. If grain is to be stored in the bin for any length of time it is important to bring the grain temperature up to a point that will prevent the abovementioned from happening. In order to accomplish this, it is recommended that the grain temperature in the bin be raised to approximately 10 C. It is important as a producer to consult safe storage charts that will show what length of time you can store the grain at its’ current moisture and temperature, continued monitoring is vital. Aeration (warming) at this point should be accomplished with .05 to .1 cfm/ bus, and only until the desired, uniform temperature is achieved throughout the bin. From this point forward going into warmer temperatures, the temperature of the grain should be monitored throughout the summer and controlled accordingly using aeration. By utilizing aeration inside of grain bins you are able to minimize the effects of moisture migration and maximize the benefits of temperature control within your bin. In circumstances where you need to warm grain to finish drying in springtime conditions, it is recommended that the temperature be brought back up gradually. This will help preserve the quality of the grain kernel. Once the grain has been successfully dried, it is recommended that when possible the grain be cooled again to be stored at approximately 10 C. In summary, monitoring moisture and temperature conditions in your bin, and having an aeration system in place to help regulate these conditions, is key to successful grain storage.
Nov. 8, 2015 - Cases of grain entrapment deaths have been growing in recent years. New equipment in Prince Albert, Sask. will help firefighters aid anyone who becomes trapped under flowing piles of grain, whether in bins, silos or the back of trucks. READ MORE.  
Three grain storage bins used for natural air drying study at the IHARF research farm at Indian Head, Sask. A diesel generator, used to power the fans, is in the foreground. Photo by Ron Palmer, IHARF. An option for natural air drying other than continuous fan operation is being put forward by Ron Palmer, an electrical systems engineer with the Indian Head Agricultural Research Foundation (IHARF), a 1200-acre, non-profit producer-directed applied research organization in Saskatchewan. It isn’t fancy, but it is simple and cheap, as Palmer describes it. And if you’re skeptical, it won’t be difficult to test. The IHARF study of natural air drying began in 2007, and is being funded through the 2017 growing season by the Western Grains Research Foundation. Other sponsors include Agriculture and Agri-Food Canada, Great West Controls, and Advancing Canada’s Agriculture and Agri-Food Saskatchewan. According to Palmer, the purpose of the study is to develop a fan control strategy for natural, unheated air that results in safe storage of grain, requires less fan running time and dries grain quickly for early sales. “Safety” of the storage reflects the number of days grain can stay in storage before the germination rate (quality) falls to 95 per cent of whatever rate it had when it went into storage. The faster it reaches a stable cool and dry condition, the better the quality will be and the longer it can be stored safely. To the end of 2014, Palmer worked with spring wheat, barley and field peas in typical farm-size bins with 33 trial runs. Two 2250-bushel bins and four 3500-bushel bins were paired for the trials – each filled at the same time with the same lot of grain. The typical continuous operation strategy was compared to experimental options, with 3-hp and 5-hp fans. All bin runs from 2007 to 2013 with continuous fan operation were examined to determine the average rate of drying on an hourly basis. It was observed that there was consistently a significant amount of drying occurring in the first 24 hours of all continuous runs. “Thus, we suggest that it is important to have the fan on immediately as the grain comes in from the field,” Palmer says. After the first 24-hours, his analysis of the drying curves became very interesting. “There was a daily cycle of drying and wetting appearing to repeat every 24 hours… in general, drying occurred at night and occasionally during cool days,” he notes. Palmer’s research showed a direct relationship between grain temperature and air temperature. Drying was occurring whenever the grain temperature was decreasing. Drying was not occurring when the grain temperature was rising. In fact, grain in storage was being re-wetted by warmer outside air – moisture from the warm air was condensing on the cooler grain, and was being gradually absorbed into the grain. “There are some producers who are intuitively following a control practice of only running the fans on hot days,” Palmer notes. “This does result in drying the grain, but it also keeps the grain hot which in turn reduces the number of safe days of storage, which could lead to mould development and spoilage. “The common practice of running the fans continuously ‘works,’ but it needlessly cycles the grain through hot wet conditions which increases grain moisture and encourages spoilage,” he adds. “There are many days that the fan is running and is actually damaging the grain, by warming it up and adding moisture to the grain.” The better option, he continues, is “cool fan operation.” Ideally, operate fans only at night when the air is cooler than the grain – resulting in much less fan time and cooler, safer grain. Palmer found out that the first day was extremely critical. After that, continuous fan operation was a waste of fan operation and energy, and a waste of money. “We would remove one per cent of the grain moisture content within that first 24 hours. After that, we fell into the cycle of drying at night and wetting in daytime. Leaving the air on continuously took out more water than we put in, eventually, but we could run the thing for a whole week without getting anywhere. It was just cycling back and forth, water in, water out. We were spinning our wheels, doing nothing.” Thus, continuous natural air drying (airflow 1-2 cfm/bu) of the grain resulted in bins of warmer grain with higher moisture. On the basis of this new information, Palmer suggests, the better focus for grain in storage is to “drive the temperature down” as far as you can. His two-stage advice for best control of natural air drying is: 1. Turn on the fan immediately when filling a bin with warm grain; and 2. Leave fan on until 9 a.m. next day. After that, get the grain as cold as possible by leaving the fan on when the outside temperature is less than grain temperature. Palmer notes that one can adjust the drying time and the fan time by including an offset of one or two degrees to alter the threshold temperature. An offset of only one degree may lower the duty cycle of the fan by about five per cent, he says. The grain will be cooler and safer, but the drying time will increase. Work is being done to determine how the offset affects this balance. A sophisticated controller could include this offset. Source: Ron Palmer, IHARF. Safe daysAs Palmer studied research data from instruments on the IHARF bins over several years, he realized that maintaining the grain quality was as important as getting it dry economically. “Really, we want the grain safe. We don’t want any spoilage. Grain starts to spoil the minute it comes off your combine,” he says. “The question is, how can I store that grain with the least amount of spoilage to keep the quality as high as possible?” That led him to studies from the 1980s that led to a spoilage formula. The Fraser and Muir formula determines the safe storage time for cereal grains based on grain moisture and storage temperature. Safe storage life is 38 days at 30 degrees and 14.5 per cent moisture; at the same moisture and 20 degrees, it has 128 safe days; at zero or colder, the safe days are almost unlimited. “Two things go into secure, safe storage. We’ve been ignoring one of them. The one is dry. The other is cool or cold,” Palmer says. “How your grain is stored determines the number of safe days. If you want to keep your grain safe, keep it dry and cool.” Going back to his data from hundreds of cycles as grain in storage warmed and cooled, Palmer saw that for every 10 to 15 degrees that the grain is cooled, about one per cent moisture was removed - simply because cold air holds less moisture than warm air. “Cooling your grain is drying your grain. The two are one. You can actually build a controller now that would only be drying your grain if the outside temperature was less than your grain temperature. If it’s warmer outside, turn off the fan. If it’s less (than the grain temperature), turn on the fan. I’ve built the controllers and they work,” he says. A company in Regina has started developing a controller for this purpose, to be controlled from a smartphone. It will monitor the temperature of grain in storage and outside air. At a threshold the farmer can set, it will activate or turn off the fans. “We’re going to try that product this fall,” Palmer says. “We’re going to play with that offset, to see how it influences the on/off time.”   More to doThere’s more to do, Palmer admits. For instance, there’s discussion about what happens inside the bulk of grain in a bin. To this point, he’s treated it as a “black box” where those dynamics are ignored. He’s been measuring amounts of moisture going into the bin and amounts coming out. “We’re actually loading these bins this year with sensors for moisture and relative humidity to find out what is really going on, and how the drying is taking place, inside the bin. With the temperature and relative humidity I will be able to calculate the moisture content of the grain, at points throughout the bin. That will be interesting to see with real data, not assumptions. Predictions and assumptions could be wrong if you miss something.” There’s an “art” to drying grain, Palmer adds. “We’re looking at the possibility of using smaller fans, producing less than one cfm/bushel. They may take a longer time to dry but you’ll get more consistent, more uniform drying from top to bottom – maybe,” he says. In the remaining project years, he also may try reversing fans, using bins larger than 10,000 bushels, results with natural air drying for oilseeds and tests to clarify the “drying front” concept as moisture changes while grain is in storage. Finally, good science will produce consistent results. He’s hopeful that other work will confirm his findings or reveal issues that he has missed.  
Sept. 1, 2015, Winnipeg, MB - As harvest has begun for Canadian grain producers, the Canadian Grain Commission reminds producers that insects could be present in any grain stored over the summer, or in areas around storage bins. These insects could move easily between bins and infest your new harvest.To protect the quality of grain currently in storage, the Canadian Grain Commission recommends you: Sample the grain from the core at a depth of 30 to 50 cm (12 to 18 inches) from the surface. Insects are likely to be found in pockets of warm or moist grain. Sieve the samples or examine small portions carefully. Typically, stored product insects are very small beetles (less than 3 mm or 1/8 inch) that may not be moving. A magnifying glass can be helpful. For best results, your grain's temperature should be less than 15°C. As well, you should keep your grain at the appropriate moisture content, depending on its type (for example, wheat should be at or lower than14.5% moisture content). Summer surveys have shown that the lesser grain borer (Rhyzopertha dominica) has been found across Canada, particularly in Alberta, Saskatchewan and Manitoba. The lesser grain borer is one of Canada's most damaging pests found in stored grain. The Canadian Grain Commission has insect identification keys on our website that can help you. If you cannot identify an insect using these keys, call our Infestation Control and Sanitation Officer. Insects in your grain could be grain feeders, fungal feeders, or predators of these insects. By accurately identifying insects, you can determine the appropriate control method. The Canadian Grain Commission's website has advice on controlling grain feeding insects. You can also contact our Infestation Control and Sanitation Officer for further assistance. Make sure storage areas are clean and free from grain residues that can harbour or attract insects. If required, treat your empty storage bins with a registered contact insecticide such as malathion, pyrethrin or a diatomaceous earth-based product. Make sure you treat floor-wall joints, aeration plenums or floors and access points thoroughly. Note: Do not use malathion in bins intended for canola storage. Associated linksControlling insect pest infestationsInsect identification keysLesser grain borerManage stored grain: Maintain quality and manage insect infestationsMoisture determination for Canadian grainsTough and damp ranges for Canadian grains  
The Climate Corporation, a subsidiary of Monsanto Company, recently announced at the Farms.com Precision Agriculture Conference, the launch of the Climate FieldView digital agriculture platform into Western Canada for the 2018 growing season. With Climate’s analytics-based digital tools, more Canadian farmers will be able to harness their data in one connected platform to identify and more efficiently manage variability in their fields, tailoring crop inputs to optimize yield and maximize their return on every acre.In September 2016, the company first announced the introduction of the Climate FieldView platform in Eastern Canada, where hundreds of farmers across nearly one million acres have been experiencing the value of data-driven, digital tools on their operations. Now, farmers in Manitoba, Saskatchewan and Alberta will have the ability to use the Climate FieldView platform to uncover personalized field insights to support the many crucial decisions they make each season to enhance crop productivity.“The Climate FieldView platform is a one-stop shop for simple field data management, helping Canadian farmers get the most out of every acre,” said Denise Hockaday, Canada business lead for The Climate Corporation. “Through the delivery of the platform’s powerful data analytics and customized field insights, farmers across Canada have the power to tailor their agronomic practices more precisely than ever before, fine tuning their action plans for the best outcome at the end of the season.”Over the past year, the Climate FieldView platform had a strong testing effort across many farm operations in Western Canada, enabling the Climate team to further develop the platform’s compatibility with all types of farm equipment and crops, including canola and wheat, to collect and analyze field data from multiple sources.“Part of the challenge with data is managing all of the numbers and having an adequate cloud system to store and effectively analyze the information,” said farmer D’Arcy Hilgartner of Alberta, who participated in testing the Climate FieldView platform on his operation this season. “The Climate FieldView platform instantly transfers the field data gathered from my farm equipment into my Climate FieldView account, which is especially useful during harvest season because I’m able to see where various crop inputs were used and analyze the corresponding yield. I’ve really enjoyed having this digital platform at my disposal, and I’m excited to see the positive impacts on my business this coming year.”As Climate continues to expand its digital technologies to help more farmers access advanced agronomic insights, additional new data layers will feed the company’s unmatched R&D engine, ultimately enabling the development of valuable new features for farmers in the Climate FieldView platform. In August 2017, the company announced the acceleration of R&D advancements through the company’s robust innovation pipeline, along with new product features and enhancements to help farmers manage their field variability more precisely than ever before. Launched in 2015, the Climate FieldView platform is on more than 120 million acres with more than 100,000 users across the United States, Canada and Brazil. It has quickly become the most broadly connected platform in the industry and continues to expand into new global regions.Climate FieldView Platform Offering in Western Canada Data Connectivity - Farmers can collect, store and visualize their field data in one easy-to-use digital platform through the Climate FieldView Drive, a device that easily streams field data directly into the Climate FieldView platform. FieldView Drive works with many tractors and combines across Canada, in addition to anhydrous applicators and air seeders, helping farmers easily collect field data for the agronomic inputs they manage throughout the season. Recently, The Climate Corporation announced a new data connectivity agreement with AGCO, providing more farmers even more options to connect their equipment to the Climate FieldView platform. In addition to the FieldView Drive, farmers can connect their field data to their Climate FieldView account through Precision Planting LLC's monitors, cloud-to-cloud connection with other agricultural software systems such as the John Deere Operations Center, and through manual file upload. Yield Analysis Tools - With Climate’s seed performance and analysis tools, farmers can see what worked and what didn’t at the field level or by field zone, and apply those insights to better understand field variability by quickly and easily comparing digital field maps side-by-side. Farmers can save regions of their fields in a yield-by-region report and can also save and record a field region report through enhanced drawing and note taking tools, retrieving the report at a later date for easy analysis on any portion of their field to better understand how their crops are performing. Advanced Field Health Imagery - Through frequent and consistent, high-quality satellite imagery, farmers can instantly visualize and analyze crop performance, helping them identify issues early, prioritize scouting and take action early to protect yield. Climate's proprietary imagery process provides consistent imagery quality and frequency by using high-resolution imagery with vegetative data from multiple images, in addition to advanced cloud identification. Farmers can also drop geo-located scouting pins on field health images and navigate back to those spots for a closer look, or share with agronomic partners. Seeding and Fertility Scripting - Farmers can manage their inputs to optimize yield in every part of their field with manual variable rate seed and fertility scripting tools. Through Climate’s manual seed scripting tools, farmers can easily create detailed planting plans for their fields to build a hybrid specific prescription tailored to their unique goals, saving time and improving productivity. Additionally, Climate offers a manual fertility scripting tool, enabling farmers the ability to optimize their inputs with a customized management plan for nitrogen, phosphorus, potassium and lime tailored to their unique goals. 2018 Availability and PricingThe Climate FieldView platform is currently available for purchase in Western Canada on a per-acre basis so that farmers can begin using it on their farms in time for the 2018 growing season. To experience the complete value of the platform throughout the entire growing season, farmers should sign up for a Climate FieldView account by Jan. 1, 2018. For more information about the Climate FieldView platform and pricing, contact Climate Support at 1.888.924.7475 or visit www.climatefieldview.ca.
Precision mapping technology is increasingly user-friendly. In fact, Aaron Breimer, general manager of precision agriculture consulting firm Veritas Farm Business Management, says some precision map-writing software is so simple a producer can segment zones or draw a boundary around a field with little more than the click of a mouse. The challenge is that the maps are only as accurate as the information used to create them.
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences."The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
Variable rate (VR) technology has been around long enough that VR fertilizer application is common. But what about VR seeding rates? Like VR fertilizer, VR seeding seeks to smooth out field variability so crop establishment is more uniform.
Drones can provide a bird’s-eye view of a field to collect information and see field variability and patterns that you can’t readily detect from ground level. Photo by FotoliaAs farm acreage grows, it is virtually impossible to know every part of the field and to scout every acre. Remote sensing is simply defined as collecting field information remotely from a remote platform. Satellites, planes, UAVs/drones or equipment mounted platforms can provide a bird’s-eye view of the field to collect information and see field variability and patterns that you can’t readily detect as you walk across a field.
By Jeanette Gaultier, Provincial Weed Specialist May 7, 2016 - Herbicides work best when weeds are small. Period. Exclamation mark. You get the gist... There's perhaps no better example of this than cleavers. Take a quick flip through the Guide to Field Crop Protection and you'll notice that most herbicides with activity on cleavers only guarantee control/suppression of this weed when applied between the 1 to 4 whorl stage. Although this staging is most common, application timing may be limited to as few as 2 whorls or extend up to the 8 whorl stage, depending on the product. There are also herbicides that are somewhat ambiguous as to cleavers staging but research and experience have shown that, when it comes to herbicide application to cleavers, the smaller the better. It makes sense then that a recent question on CropTalk Westman was: 'How do you stage cleavers?' Whorled leaves, one of cleavers most distinctive features, results in a herbicide application staging unique to this weed. Staging cleavers is similar to other weeds with a few simple tweaks: Find the main stem. Identifying the main stem is an important step in staging crops and weeds. But this is often easier said than done with cleavers because of its creeping habit and similar sized branches. If you can't find the main stem, just be sure to pick the stem with the highest number of whorls present. Don't count the cotyledons. Only the true leaves count when staging plants. The cotyledons of cleavers are oval to oblong with a notch at the tip and are easy to distinguish from the true leaves. Each whorl counts. Unlike most other weeds, cleavers have a whorled leaf arrangement, with each whorl having ~4 to 8 leaves (usually 6). In this case, simply count each whorl along the main stem rather than each leaf (see figure & example below).  
Are AgBots the way of the future for agriculture in Canada, or simply the latest in a long line of products marketed as must-haves for Canadian producers?Long used in the dairy industry for autonomous milking and herding, robotics technology is being applied in soil testing, data collection, fertilizer and pesticide application and many other areas of crop production.“Robotics and automation can play a significant role in society meeting 2050 agricultural production needs,” argues the Institute of Electrical and Electronics Engineers’ Robotics and Automation Society on its website.  Farmers have a right to question the value of new technologies promising greater efficiency on the farm. But Paul Rocco, president of Ottawa-based Provectus Robotics Solutions, believes robotics offer a suite of potential new solutions for producers short on resources and averse to risk.“In a perfect world, farmers would have a machine that could perform soil sampling at night, deliver a report in the morning, and be sent out the following night to autonomously spray,” says Rocco. “We’re a ways away from that, but the technology is maturing and the capabilities exist already – it’s about putting it into the hands of farmers and making sure it’s affordable.”Provectus’ latest project involved problem solving for a banana plantation in Martinique, where human ATV operators are at risk of injury from chemical spray or even death due to unsafe driving conditions. The company recently developed a remotely operated ground vehicle that carries spray equipment and can be controlled by operators in a safe location.“We see applications in Canada,” says Rocco. “Why expose people to hazardous substances and conditions when you can have an unmanned system?”Robotics are not all bananas. For example, a Minneapolis-based company, Rowbot Systems, has developed an unmanned, self-driving, multi-use platform that can travel between corn rows – hence, “Rowbots” – to deliver fertilizer, seed cover crops, and collect data.RowBots are not yet commercially available, but CEO Kent Cavender-Bares says there’s already been interest from corn growers across the United States as well as Canada. As to whether the use of robotics is cost-effective for farmers, it’s almost too soon to say. But utility can be balanced against cost.“In terms of cost effectiveness from the farmer’s perspective, there’s a strong story already for driving yields higher while reducing production costs per bushel. Of course, we need to bring down the cost on our side to deliver services while making a profit,” says Cavender-Bares.He believes that as autonomy spreads within agriculture, there will be a trend toward smaller, robotic machines. “Not only will smaller machines be safer, but they’ll also compact soil less and enable more precision and greater diversity of crops,” he says.Case study: ‘BinBots’Closer to home, a group of University of Saskatchewan engineering students has designed a “BinBot,” an autonomous sensor built to crawl through grain bins and deliver moisture and temperature readings.The students were part of a 2015 Capstone 495 design course, in which groups of four students are matched with industry sponsors to tackle specific problems.Joy Agnew, a project manager with the Prairie Agricultural Machinery Institute (PAMI)’s Agricultural Research Services, stepped forward with a challenge: could students develop an improved grain bin sensor for PAMI?“It came about from the first summer storage of canola project we did, and the data showing that in the grain at the top of the bin, the temperature stayed steady during the entire sampling period, but the temperature in the headspace grain was fluctuating wildly,” says Agnew. “We realized the power of grain insulating capacity – there was less than 15 centimetres between the grain that was changing and the grain that wasn’t. That made us think: the sensors are really only telling you the conditions in a one-foot radius around the sensor – less than one per cent of all the grain in the bin.”The problem she set to the students: can you design sensors with “higher resolution” sensing capabilities than currently available cables?“We were looking at some high-tech ideas of how we could do that with radio waves or imaging, and we thought we needed more mechanical systems,” says Luke McCreary, who has since graduated. “We ended up with a track system in the bin roof with a robot on a cable. The robot has a couple of augers on it so it can propel itself through the grain, taking temperature and humidity measurements as it goes and sending that data to a logging source to create a 3D map of the temperature, humidity and moisture in the bin,” he says.Once built, the robot will be six inches in diameter and 14 inches long, with the ability to move laterally, vertically and transversally.Agnew says PAMI is applying for funding to build the robot, and has already had some interest from manufacturers. She says the technology could reach farmers’ bins between five and 10 years from now.“We think this is the way of the future to avoid the risk of spoilage,” she says. “The technology is advancing, and costs are declining rapidly.”
Mar. 16, 2016 - According to the Canadian Agricultural Injury Reporting (CAIR) program, 13 per cent of farm-related fatalities across Canada are traffic-related, and most involved tractors. During the busy spring season, farmers often travel long distances between fields, and this requires transporting equipment on public roads throughout rural Alberta. Farm equipment is oversized and slow compared to other vehicles using the roads and when certain procedures are not met, this can lead to collisions and other incidents. "Maintenance is a contributing factor to the safety of transporting farm equipment," says Kenda Lubeck, farm safety coordinator, Alberta Agriculture and Forestry (AF). "Poor maintenance of equipment such as brakes or tires can lead to loss of control of the vehicle." Check all tires for air pressure, cuts, bumps and tread wear. Always lock brake pedals together for highway travel as sudden braking at high speeds on only one wheel could put the tractor into a dangerous skid. Equip heavy wagons with their own independent brakes. The number one cause of farm-related fatalities in Canada is machinery roll overs. To minimize the risk of severe injury or death to the operator, all tractors need roll-over protective structures (ROPS)," says Lubeck. "In addition, operators should always wear a seatbelt as ROPS are ineffective in a roll over without this restraining device." To avoid traffic collisions between motorists and farm equipment, farmers should ensure their equipment is clearly visible and follows all regulated requirements for lighting and signage. This will ensure approaching traffic has time to react to a slow-moving vehicle. Use reflective tape and reflectors in the event that large equipment is required to travel in dim lighting conditions. In Canada, reflective material should be red and orange strips. You can purchase tape in kits or by the foot at local farm or hardware stores. Dust-covered signage and lights make farm machinery less visible to motorists and dust-covered machinery causes poor visibility for the operator, who may not see oncoming traffic. Be sure to clean farm equipment prior to transportation to minimize the risk of collision due to poor visibility. "It's important to note that regulated requirements for lighting and signage on public roadways include the use of a slow-moving vehicle (SMV) sign," explains Lubeck. "The SMV sign must be properly mounted, clean and not faded. It must be positioned on the rear of the tractor or towed implement and clearly visible. SMV signs must only be used on equipment travelling less than 40 km/hr." For more information on the safe transportation of farm equipment on public roads, see AF's Make it Safe, Make it Visible or go to www.agriculture.alberta.ca for more information on farm safety.  
Researchers used polyethylene tanks meant for fish, at Simpson, Sask. Note the grass growth on top and the drip line. Photo by Larry Braul, AAFC. Thank the Swedes for this idea: “biobeds” that promise to protect water quality for generations to come. The concept represents a low cost, environmentally friendly way to deal with the rinse water flushed out of agricultural field sprayers. According to Larry Braul, Agriculture and Agri-Food Canada water quality engineer in Regina, the biobed is an organic filter for pesticides, using conventional low value material. The use of biobeds has become an accepted practice in Europe in the past 15 years. Braul and Claudia Sheedy, research scientist with AAFC at Lethbridge, Alta., are co-leading the project to develop a biobed model to support Canadian farmers. Starting with one biobed at Outlook, Sask. in 2014, AAFC expanded the project in 2015 to sites at Simpson, Sask., and Grande Prairie and Vegreville, Alta. An additional biobed was constructed in fall of 2015 and will be monitored in 2016 at Lethbridge. “At the end of 2016, we expect to have enough data to produce a construction, operation and maintenance manual for biobeds,” Braul notes. Initial results promising“The first year at Outlook, it was highly effective. It removed more than 98 per cent and up to 100 per cent of the pesticides it received. That was very positive, and the results we just got back for 2015 are very similar,” Braul says. “Our climate is much colder than Europe and we have more intense rainfall events. We are working to address those issues with designs revised for the Prairies,” he adds. In principle, a biobed is relatively inexpensive, easy to use and significantly accelerates the natural breakdown processes for pesticides. The most challenging aspect at this point is in finding or developing an inexpensive method to easily collect the sprayer rinse water. On most farms when rinsing, the sprayer arms are fully extended while water is pumped through the system. As a result, a catch basin for that spray would need to be up to 120 feet long by about 20 feet wide and would need to drain the spray to a point where it can be collected. Biobed ingredientsThe contained biobed for the rinse water uses a mixture of topsoil, compost and straw. It provides an ideal habitat for microbes to break down the pesticides carried in the rinse water, to the point they pose no threat to the environment. In the project’s first year, Braul and Sheedy discovered the biobed at Outlook was still frozen a few inches below the surface in May, when they hoped to use it. It needed to be warmed to about 10 C, so that microbes could process the rinse water. They resolved that issue for 2015. Braul says, “Microorganisms like warm conditions. In a new biobed, we put heat tape at the bottom. We can get them up to almost 30 C at the end of May, so they can really start breaking down the pesticides. With a little heat application at the right time, we are probably doubling the decomposition rate they’re getting in Europe.” European research found that half and up to 90 per cent of pesticide contamination in groundwater could be traced to the places where sprayers were rinsed, Braul says. Two factors go into that: there’s a concentration of pesticides in one place, and a lot of water washing it down. It’s too much for the microorganisms to process. Often the topsoil is stripped off and replaced with gravel at the site where the farm sprayer is rinsed. This removes the organic matter that absorbs pesticides and allows the pesticide to leach through the soil zone.  Often, it’s fairly close to the well that supplies the water. “That’s the worst situation for managing the site,” Braul says. “It becomes quite a significant source of contamination. Instead, if we capture that rinsate, contain it and treat it, we can make a significant impact on the contamination problem.” The Swedes were first to address the problem. They collected rinsate and applied it to the top of a simple hole in the ground filled with the biomix material. “The Swedes applied the rinsate to the top of the biomix and let it seep through into the ground. It was the standard for six or seven years. It was a heck of a lot better than putting it on gravel, because it absorbed a lot of the pesticide. Now, with more sensitive instruments, we know that model doesn’t remove all the pesticides,” Braul says. Current practice is to build a contained biobed up to a metre deep. In the UK, that would be lined at the bottom with clay or plastic, and drained with weeping tile. For their first project, Braul and Sheedy built a wood frame structure. On later projects they also used open polyethylene tanks meant for fish. Plans call for putting the biomix into big tote bags already used for storing granular fertilizer or pesticide. “Really, you can use anything as a container for the biomix,” Braul says. The biomix material needs three basic components: topsoil (from a field is best, because it will already have microbes adapted to degrading pesticides); woodchips or straw (to provide the lignin for microbial food and structure); and, compost or peat (to provide the organic matter that absorbs the pesticides). Among design variations tried in 2015, the most efficient was a two-cell system about a half-metre deep. Each cell has a six-inch layer of crushed rock at the bottom. A sump pump collects leachate from below the crushed rock in the first cell and pumps it to the surface of the second cell. “Two cells remove a much higher percentage of the pesticide than single cell biobeds,” Braul notes. Although literature from the European experience suggests that nearly all the microbial activity happens in the top six inches of the biobed, most beds are one metre thick to provide additional absorption capacity. At the University of Regina, microbiologist Chris Yost is using DNA testing to determine the type and number of microbes at various depths. Yost hopes to determine the region of greatest microbial activity. At Outlook, a two-cell biobed only a half-metre deep worked better than expected, Braul says. In practice, degradation of pesticides in the biomix can take three to six months, he adds. There’s still a need to deal with the reasonably clean leachate coming from the bottom of the biomix, and a need for eventual disposal of the biomix itself. “Effluent has an extremely low level of remaining pesticide. We recommend spraying it on an area that has some organic matter and lots of microorganisms, and allow nature to do its work. One option is to put it into a tank and spray it someplace, or you can sprinkle it safely on grass or drip it along a row of trees. The little amount of remaining pesticide will be degraded in the topsoil,” he says. Setting up a collection pad for the sprayer rinsate would be the biggest single cost. It can be constructed from heavy plastic but a concrete pad is ideal. “If you want to collect everything you rinse out, you have a fairly large concrete pad. Depending on where you are, it probably could cost $5,000 to $10,000. That’s a big challenge – but some inexpensive creative options are possible,” Braul says.   
For the past nine years veteran automotive journalists have donated their time to act as judges in the only annual North American truck competition that tests pickup and van models head to head – while hauling payload and also towing.   The Canadian Truck King Challenge started in 2006, and each year these writers return because they believe in this straightforward approach to testing and they know their readers want the results it creates. This year, nine judges travelled from Quebec, Saskatchewan and across Ontario to the Kawartha Lakes Region where we test the trucks each year. All the entries are delivered to my 70-acre IronWood test site days before the judges arrive so we can prepare them for hauling and towing. In the meantime they are all outfitted with digital data collectors. These gadgets plug into the USB readers on each vehicle and transmit fuel consumption data to a company in Kitchener, Ont. (MyCarma) which records, compiles and translates those readings into fuel economy results that span the almost 4000 test kilometres that we accumulate over two long days. These results are as real-world as it gets. The numbers are broken into empty runs, loaded results and even consumption while towing. Each segment is measured during test loops with the trucks being driven by five judges – one after the other. That’s five different driving styles, acceleration, braking and idling (we don’t shut the engines down during seat changes). The Head River test loop itself is also a combination of road surfaces and speed limits. At 17 kilometres long, it runs on gravel, secondary paved road and highway. Speed limits vary from 50 to 80 km/h and the road climbs and drops off an escarpment-like ridgeline several times; plus it crosses the Head River twice at its lowest elevation. The off-road part of our testing is done on my own course at IronWood. This is the third year that we have used the data collection system and released the final fuel consumption report that MyCarma prepares for the Truck King Challenge. It’s become one of our most anticipated results. But how do we decide what to test? Well as anyone who’s bought a truck knows, the manufacturers never sleep, bringing something different to market every year. As the challenge looks to follow market trends, what and how we test must change each year too, and the coming 2016 model year proved no different. In the full-size and mid-size pickup truck categories, we had a field of seven contenders: Full-Size Half-Ton Pickup Truck Ford F-150, Platinum, 3.5L, V6 EcoBoost, gas, 6-speed Auto Ford F-150, XLT, 2.7L, V6 EcoBoost, gas, 6-speed Auto Chevrolet Silverado, High Country, 6.2L, V8, gas, 8-speed Auto Ram 1500, Laramie, 3L EcoDiesel, V6, diesel, 8-speed Auto Mid-Size Pickup Truck Toyota Tacoma, TRD Off-Road, 3.5L V6, gas, 6-speed Auto GMC Canyon, SLT, 2.8L Duramax, I-4 diesel, 6-speed Auto Chevrolet Colorado, Z71, 3.6L V6, gas, 6-speed Auto These vehicles are each all-new, or have significant changes made to them. However this year the Truck King Challenge decided to try something else new by offering a returning champion category. This idea had been growing for a while having everything to do with the engineering cycles that each manufacturer follows. Simply put, trucks are not significantly updated each year and, to date, we have only included “new” iron in each year’s competition. However, we started to think that just because a truck is in the second or third year of its current generational life shouldn’t make it non-competitive. So, this spring we decided that for the first time the immediate previous year’s winner (in each category) would be offered the chance to send its current truck back to IronWood to compete against what’s new on the market. Thus, this year the invitation was sent to the Ram 1500 EcoDiesel, a previous winner that accepted the offer to return and fight for its crown. All vehicles took the tests over two days with the judges evaluating everything from towing feel to interior features. The judges score each vehicle in 20 different categories; these scores are then averaged across the field of judges and converted to a score out of 100. Finally the “as tested” price of each vehicle is also weighted against the average (adding or subtracting points) for the final outcome. And this year’s winners are... Full-Size Half-Ton Pickup Truck – Ram 1500 EcoDiesel – 82.97% Mid-Size Pickup Truck – GMC Canyon Duramax – 76.30% The overall top scoring 2016 Canadian Truck King Challenge winner is the Ram 1500, Laramie, 3L EcoDiesel, V6, diesel, 8-speed Auto. Full details and scores are now available online at www.canadiantruckkingchallenge.ca.  
For the past nine years, veteran automotive journalists have donated their time to act as judges in the only annual North American truck competition that tests pickup and van models head to head – while hauling payload and also towing.   The Canadian Truck King Challenge started in 2006, and each year these writers return because they believe in this straightforward approach to testing and they know their readers want the results it creates. I started it (and continue to do it) for the same reason – that, and my belief that after 40 years of putting trucks to work I know what’s important to Canadians. Now, that’s a long list of qualifications, but in a nutshell it’s the concept that a truck can be pretty, but that alone is just not enough. It had also better do its job – and do it well. This year, nine judges travelled from Quebec, Saskatchewan and across Ontario to the Kawartha Lakes Region where we test the trucks each year.  All the entries are delivered to my 70-acre IronWood test site days before the judges arrive so we can prepare them for hauling and towing. In the meantime they are all outfitted with digital data collectors. These gadgets plug into the USB readers on each vehicle and transmit fuel consumption data to a company in Kitchener, Ont. (MyCarma) that records, compiles and translates those readings into fuel economy results that span the almost 4,000 test kilometers we accumulate over two long days.   These results are as real world as it gets. The numbers are broken into empty runs, loaded results and even consumption while towing. Each segment is measured during test loops with the trucks being driven by five judges – one after the other. That’s five different driving styles, acceleration, braking and idling (we don’t shut the engines down during seat changes).   The Head River test loop itself is also a combination of road surfaces and speed limits. At 17-kilometres long it runs on gravel, secondary paved road and highway. Speed limits vary from 50 to 80 km/h and the road climbs and drops off an escarpment-like ridgeline several times; plus it crosses the Head River twice at its lowest elevation. The off-road part of our testing is done on my own course at IronWood. Vans are not tested on the off-road course, though it’s noteworthy that the Mercedes Sprinter was equipped with a four-wheel drive system this year. This is the third year that we have used the data collection system and released the final fuel consumption report that MyCarma prepares for the Truck King Challenge. It’s become one of our most anticipated results. But how do we decide what to test? Well as anyone who’s bought a truck knows, the manufacturers never sleep, bringing something different to market every year. As the challenge looks to follow market trends, what and how we test must change each year too and the 2016 model year proved no different. We had a field of 14 contenders at IronWood this year covering four categories. They were as follows: Full-size half-ton pickup truck Ford F-150, Platinum, 3.5L, V6 EcoBoost, gas, 6-speed Auto Ford F-150, XLT, 2.7L, V6 EcoBoost, gas, 6-speed Auto Chevrolet Silverado, High Country, 6.2L, V8, gas, 8-speed Auto Ram 1500, Laramie, 3L EcoDiesel, V6, diesel, 8-speed Auto Mid-size pickup truck Toyota Tacoma, TRD Off-Road, 3.5L V6, gas, 6-speed Auto GMC Canyon, SLT, 2.8L Duramax, I-4 diesel, 6-speed Auto Chevrolet Colorado, Z71, 3.6L V6, gas, 6-speed Auto Full-size commercial vans Ford Transit 250, 3.2L Power Stroke I-5 diesel, 6-speed Auto Mercedes Sprinter 2.0L BLUE-Tec I-4 diesel, 2X4 Mercedes Sprinter 3.0L BLUE-Tec V6 diesel, 4X4 Ram ProMaster 1500, 3.0L I-4 diesel, 6-speed Auto/Manual Mid-size commercial vans Ram ProMaster City, SLT, 2.4L Tigershark I-4 gas, 9-speed Auto Nissan NV200, 2.0L I-4, gas, Xtronic CVT Auto Mercedes Metris, 2.0L I-4, gas, 7-speed Auto These vehicles are each all-new – or have had significant changes made to them. However, this year, the Truck King Challenge decided to try something else new by offering a returning champion category. This idea had been growing for a while and had everything to do with the engineering cycles that each manufacturer follows. Simply put, trucks are not significantly updated each year and to date we have only included “new” iron in each year’s competition. However, we started to think that just because a truck is in the second or third year of its current generational life shouldn’t make it non-competitive. Certainly if you watch the builders’ ads it doesn’t!   So, this spring we decided that for the first time the immediate previous year’s winner (in each category) would be offered the chance to send its current truck back to IronWood to compete against what’s new on the market.   This year the invitation was sent to the Ram 1500 EcoDiesel, Ford Transit 250 and Nissan NV200 – all previous winners that accepted the offer to return and fight for their crowns. They, along with the new vehicles, took the tests over two days with the judges evaluating everything from towing feel to interior features. The judges score each vehicle in 20 different categories; these scores are then averaged across the field of judges and converted to a score out of 100. Finally the “as tested” price of each vehicle is also weighted against the average (adding or subtracting points) for the final outcome. And this year’s segment winners are... Full-Size Half-Ton Pickup Truck – Ram 1500 EcoDiesel – 82.97 per cent Mid-Size Pickup Truck – GMC Canyon Duramax – 76.30 per cent Full-Size Commercial Van – Ford Transit 250 – 73.90 per cent Mid-Size Commercial Van – Mercedes Metris – 75.69 per cent The overall top scoring 2016 Canadian Truck King Challenge winner is the Ram 1500, Laramie, 3L EcoDiesel, V6 diesel, 8-speed Auto. Congratulations to all the winners and to the two repeating champions – the Ram 1500 EcoDiesel and the Ford Transit 250.
Installation of controlled drains on the Van Den Berg farm by drainage contractor Ken McCutcheon and UTRCA.. Photo courtesy of UTRCA. December 2, 2014 - On flat cropland, controlled drains may become the new norm in Ontario, replacing conventional tile drainage on many of the province’s farms. The flexibility of controlled drainage delivers benefits for farmers and the environment that standard drainage cannot offer, and the use of these systems is spreading accordingly. Controlled drains have been studied at the Agriculture and Agri-Food Canada (AAFC) research station in Harrow, Ont., for two decades, and some farmers in Essex and Kent have already installed them on their land. “This practice is somewhat common in that area because the land is very flat there,” notes Ken McCutcheon, owner of McCutcheon Farm Drainage Ltd. in Thorndale, Ont. “The Americans in various states have really embraced controlled drainage as well. However, there are not many areas where it works well in Ontario because it totally hinges on flat topography.” Earlier this year, McCutcheon (who has five employees in the field plus office staff at his 37-year-old business) installed two controlled drains on the farm of Henk and Annie Van Den Berg in Lucan, Ont. It was a project spearheaded by Brad Glasman (co-ordinator of conservation services) and Craig Merkley (conservation services specialist) at the Upper Thames River Conservation Authority (UTRCA), along with AAFC senior water management engineer Andrew Jamieson. Each controlled drain covers a five-acre field.“It was an ideal site for this project as it was very flat,” McCutcheon says. “That’s a key factor in making this sort of controlled outlet work. It allows you to control the water table within 12 inches.” He notes that if there are elevation changes in a field, the installation of more controlled drain structures would be required to control water flow, and you end up with structures in the field instead of just at the outlet at the edge of the field. This interferes with planting, harvesting and so on. Each controlled drain, placed just before the outlet, consists of a plastic tube 45 cm wide and almost 2 m long integrated with the existing drainage tile. Inside each tube are vertical plastic panels that can be pulled up to let the water flow or pushed downward to stop it. Excessive rainfall can cause water to be pushed up and over the panels and flow out, so additional panels must be added to block water flow if desired in that case. The system is meant to be left open in the spring and fall to drain the field, and closed during the summer to retain water. It is designed to allow faster drying of fields in the spring so that crops can be planted earlier, and to conserve the water from summer rainstorms. This year, the Van Den Berg’s got a large rainfall at the end of July, and closed the two controlled drains at that point. “Water ran through the controlled drains for about a day, and through the conventional drains on the rest of the farm for four days, which is a substantial amount of water loss in comparison,” says Henk Van Den Berg. Environmental benefitsKeeping nutrient-rich water in the field instead of having it flow away (as it does in a conventional tile drainage system) is not just better for crops and farmers. It is also, as Glasman notes, better for the environment and human health. High levels of phosphorus from fertilizer, for example, can lead to algae blooms in Lake Erie. Nutrient runoff from farms also contributes to generally poorer water quality in creeks, rivers and lakes in Ontario, including the Great Lakes. The cleaner water provided by controlled drainage, therefore, benefits all organisms, from invertebrates to birds to human beings. Glasman, Merkley and Jamieson estimate that about 80 to 90 per cent of the phosphorus and nitrogen in a field will stay put with controlled drainage compared to what would have been lost into the watershed with conventional tile. Monitoring equipment to measure nutrient and water outflow (from the Van Den Berg’s controlled drainage fields as well as their regularly tiled fields of a similar size and topography as a control) is expected to be in place soon. Jamieson says this three-year project will involve year-round monitoring. Measuring benefits“As far as how the system is working so far, it’s early days yet,” says Merkley. “We are still learning the drainage characteristics of the site and how the system is responding to rain events.” He says there are no plans at the moment to test the system on other fields, but they may look at the feasibility of automating the stop panels – tying in the raising and lowering of the panels to the amount of rainfall received. “We’re not sure it can be done, but there are plans to investigate the idea,” Merkley notes. In addition to needing flat topography for controlled drains, McCutcheon says newer tile drainage systems – with pipes that are closer together than older systems – make controlled drains much more effective. “In older systems, the spacing of the tile is wider and you’re backing the water up in those pipes with the water level varying because of the distance,” he says. “In newer systems, the tiles are closer and you have more pipes in the ground with a more uniform water table, so with controlled drains [incorporated with those systems], you will more evenly distribute and store water.”   Glasman says yields should be able to be increased by 10 to 15 per cent over time with a controlled drain system. The controlled drainage structures are approximately $700 apiece plus installation, and are available from some of Ontario’s largest drainage material suppliers. When a farmer would achieve cost return depends on a few factors. Each year is different in terms of how much water conservation matters (how dry it becomes) in crop yield, weather patterns, the price farmers get for their harvests, and so on. However, in these times of increasing drought conditions, return on investment for controlled drainage may be swift.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine