Top Crop Manager

Features Fertilizer Seed & Chemical
Cashing in on canola

Developed by plant breeders in Saskatchewan and Manitoba during the 1960s and 1970s to meet a growing demand for edible oil production in Canada, canola has become a major cash crop in Western Canada. It has been less attractive economically for eastern producers, primarily because so few crushing facilities are located within a reasonable distance from the major growing areas in Eastern Canada.

However, that is changing. Between 2006 and 2011, canola production in Eastern Canada increased 305 per cent to more than 141,000 acres, increasing farm-gate cash receipts almost 700 per cent to $46.3 million. And the 2010 operationalization of a canola and soybean crushing plant and oil refinery in Becancour, Que., by Twin River Technologies – Enterprise de Transformation de Graines Oléagineuses (TRT-ETGO) further significantly brightens the prospects of canola production in Eastern Canada.

This growth created an urgent need for the industry to develop sound agronomic practices for canola production in Eastern Canada, particularly with respect to nitrogen fertilizer application and improved nitrogen-use efficiency, for the environmental and economic sustainability of canola production.

To address that need, Agriculture and Agri-Food Canada (AAFC) scientist Dr. Bao-Luo Ma is leading a project at the Eastern Cereal and Oilseed Research Centre (ECORC) in Ottawa, with the assistance of university professors Dr. Donald Smith and Joann Whalen from McGill University, Dr. Anne Vanasse from Laval University, Dr. Claude Caldwell from Dalhousie University and Dr. Hugh Earl from the University of Guelph, as well as Peter Scott, the provincial forage specialist for New Brunswick’s Department of Agriculture, Aquaculture and Fisheries.

Since 2011, the group has conducted experiments during the growing seasons at various sites in Eastern Canada to investigate the growth, yield and yield components of canola in response to various combinations of pre-plant and side-dressed nitrogen with soil-applied sulfur and soil and foliar-applied boron. Sites are located in Ottawa and Elora, Ont.; Ste. Anne de Bellevue and St-Augustin-de-Desmaures, Que.; Fredericton, N.B. and Canning, N.S.

At these sites, the researchers are investigating the responses of different canola cultivars (hybrids) to the timing and rate of nitrogen application, the combination of nitrogen and sulphur, nitrogen and boron, yield, nitrogen use efficiency and carbon footprints of different rotation systems – canola following wheat, soybean or corn. And, they are identifying the traits and tools for the development of nutrient cycling knowledge, implementing site-specific best management practices and adapting canola to existing cropping systems.

“Our preliminary results indicate that canola yields increased by 9.7 kilograms per hectare (kg/ha) for pre-plant nitrogen application and by 13.7 kg/ha for side-dress nitrogen application, for every kilogram of nitrogen per hectare applied, in six of the 10 site-years,” Ma says. “The challenge remains to develop site-specific fertilizer applications that deliver ample nitrogen, sulfur and boron for canola production considering that unfavourable weather conditions may cause nutrient losses and constrain canola growth at key development stages in Eastern Canada.”

Because agriculture production is a complex system, modifying one nutrient in the cropping system could have cascading effects on other nutrients and other crops as well. Developing efficient nutrient management regimes is a prerequisite for promoting canola as a viable cash crop in Eastern Canada.

“Canola is a non-legume crop and requires large amounts of nitrogen fertilizer for production,” Ma says. “Inefficient use of this nutrient not only reduces farmers’ profits, but may also put the environment at risk with nitrate nitrogen leaching, ammonia volatilization, nitrous oxide emissions, etc. affecting the air we breathe, water we drink and daily environment.”

From their research, Ma’s team have determined a number of best practices for successfully growing canola in Eastern Canada, including applying a small portion of nitrogen fertilizer at pre-sowing and the majority of the nitrogen nutrition at the five to six leaf, or bolting, stage. “This would increase canola seed yield and/or increase nitrogen use efficiency,” Ma says. “This may also give farmers the option to reduce the amount of nitrogen application when drought or other stresses are expected during the growing season.”

Other best practices are to plant the crop in narrow row spacing – seven inches – at a seeding rate of five kg/ha and, based on the long-term trend of average minimum air temperature in April and May, to determine the optimum seeding date. Optimum seeding dates usually occur the last week of April to the first week of May for Ottawa, Guelph and Montreal regions; May 11 or after for Sainte-Foy and northern Quebec region; and late May for Harrington, P.E.I.

Ma says they will continue to create and advance the knowledge and technology required to broaden canola production in Eastern Canada to meet the demand of the industry, improve producers’ competitiveness on the global market, provide consumers with healthy and environmentally friendly food and fuel and provide the general public with a continued high quality environment.

“As new cultivars are being developed, research activities are required to develop/implement site-specific and matching strategies to obtain the true potential of new cultivars in farmers’ fields,” says Ma, narrowing the gap between cultivars’ potential yield and realized yield under field conditions as an example.  


January 25, 2016  By Trudy Kelly Forsythe


Stories continue below