Insect Pests
Globalization of the Arctic, emergence of invasive microbial pathogens, advances in genomic modification technology, and changing agricultural practices were judged to be among the 14 most significant issues potentially affecting how invasive species are studied and managed over the next two decades. | READ MORE
A Canola Agronomic Research Program (CARP) project on cutworms is now completed, resulting in "The Cutworm Booklet," which will help producers identify and control cutworm species, and give them a better understanding of the role of natural enemies in the control of the various cutworm species.
Set out a free smorgasbord and see who shows up. In the case of fababean, as acreage has risen, pea leaf weevil and lygus bug have been coming to dinner. For producers, the main concern with pea leaf weevil is feeding on nitrogen-fixing nodules, while for lygus bug, the economic impact is related to seed quality.
Cutworm management starts with identification – knowing what species is at work in your fields helps unlock information that improves cutworm scouting and management. Knowledge of cutworm biology, behaviour, preferred habitat, impacts of weather and interaction with its natural enemies will all improve scouting techniques and pest management decisions for growers.

The Cutworm Pests of Crop on the Canadian Prairies - Identification and Management Field Guide describes the economically important cutworm pests in detail and provides the information needed to manage them.
The first Prairie-wide risk and forecast maps are now available from the Prairie Pest Monitoring Network blog. They can be veiwed and downloaded here. Maps are generated for bertha armywork, grasshoppers, wheat midge, cabbage seedpod weevil, pea leaf weevil, wheat stem sawfly, diamondback moth as well as average temperature, average precipitation and modeled soil moisture for the Canadian Prairies. 
When the cereal leaf beetle (CLB) was first spotted in Alberta in 2005, the then-regulated pest was met with consternation by western Canadian producers. CLB can cause significant damage to all crops in the grass family, even forages, and yield losses in affected areas of the United States have reached 50 per cent.
A dry spring hindered crop growth and gave a leg up to early season insects like cutworms and flea beetles in some areas of the Prairies in 2016. Mid-season growing conditions favoured wheat midge.
For potato growers in Western Canada who are nervously watching the progress of potato psyllids (Bactericera cockerelli) moving in from the northwest United States, there’s good news: none of the potato psyllids found in Western Canada are carrying the zebra chip pathogen, Candidatus Liberibacter solanacearum (Lso). The Lso pathogen is transmitted by the potato psyllid, and zebra chip has caused severe damage in potatoes in the western United States, Mexico, Central America and New Zealand.
Soybean aphids have become well established throughout the northern Midwest United States and the provinces of Ontario and Quebec, causing significant damage in some years.

Because of the potential for ongoing problems from this yield robber in the future, there have been significant funding efforts from research programs: One management strategy has been to develop soybean varieties that are resistant to soybean aphids.

“The checkoff in Ohio as well as the North Central region states have put in a lot of investment in developing soybean plants that are resistant to the aphids, but now we have aphids that have overcome that resistance,” said Andy Michel, field crops entomologist at Ohio State University.

To address this challenge, researchers took on the extensive process of sequencing the entire soybean aphid genome to help develop strategies that prevent the spread and increase of aphids capable of breaking aphid resistance. Michel led the effort.

“My laboratory at Ohio State focuses on understanding how soybean aphids are able to overcome aphid resistance in soybean. Through this research, we hope to develop strategies that prevent the spread and increase of aphids capable of breaking aphid resistance. In the course of generating DNA sequences…we were able to sequence the entire soybean aphid genome,” he said. “We now have a really good roadmap for the soybean aphid and understanding all of the genes that are involved that make the aphid such a bad pest for soybean farmers in the north central region.”

The soybean aphid is now the fourth aphid species with a completely described genome and this new information will be a valuable tool moving forward with soybean aphid management. | READ MORE
“The pea leaf weevil has been a traditional pest for many years, and there is a lot of these pests in Canada,” says Gadi V.P. Reddy, entomologist of Montana State University’s Western Triangle Agricultural Research Center (WTARC). “The pea leaf weevil spread across the pulse growing regions in 2012, increasing problems caused by the pest.”

Reddy spoke at WTARC field days about his pheromone research project. Reddy has grant funding under the Montana Specialty Block Grant program, in cooperation with the Montana Department of Agriculture and USDA-National Institute of Food and Agriculture (NIFA), for the pea leaf weevil pheromone project to attract the pea leaf weevil.

There are two generations of pea leaf weevil per year, but the second generation of adults don’t cause damage like the first generation. During winter, the weevil hibernates under debris leaves and emerges in the spring, usually around May. When the pest emerges in spring, the adults feed on pollen and nectar on leaves; then they mate and the females lay eggs on the seedlings of peas and lentils that emerge as larvae. The larvae or grubs burrow deep in the soil and feed on roots and root nodules, causing damage. Plants fix less or no nitrogen when the roots are damaged, and sometimes the plant itself dies.

Reddy experimented using baited aggregation pheromone traps in the field to help monitor and mass trap weevil populations. He found that the pitfall traps worked the best at catching pea leaf weevils. These traps are a container that is sunk into the ground so that its rim is flush with the soil surface. Insects simply fall into the trap. Reddy used a liquid aggregation pheromone to lure them.

Another pheromone lure type is a bubble wrap, placed in pea or lentil fields.

In these traps, growers use a small quantity of soap or detergent water so that the trapped weevil gets killed.

“We found a lot of pea leaf weevils in our pheromone traps in 2016. Next summer, we will determine how many pheromone-baited traps we need per acre to trap the weevils,” Reddy says.

In addition, WTARC will be developing biodegradable pheromone lures so that growers won’t have to take them out of the field after each season.

Reddy is also looking at bio-based insecticides to control pea leaf weevils.
The wheat midge forecast for 2017 shows an overall lower level of wheat midge across Alberta. There has been a slight bounce back from the collapse of the extreme populations in the eastern Peace region. Although wheat midge has not followed the forecasts very well in the Peace region, it's important to note that there are likely sufficient populations of midge in the eastern Peace to fuel a resurgence if conditions are in the insects favor (specifically delayed crops and higher than normal rainfall).

Central Alberta has some areas of east of Edmonton with high numbers of wheat midge. The population has remained low in much of southern Alberta with the exception of some irrigated fields. Producers should pay attention to midge downgrading in their wheat samples and use this as a further indication of midge risk in their fields.

Over the past several years the field to field variation has been very considerable throughout the province, especially in those areas with higher counts. Individual fields throughout Alberta may still have economic levels of midge. Each producer also needs to assess their risk based on indicators specific to their farm. | READ MORE

A new study is helping Quebec researchers understand how to better control soybean aphid in the province.
Sometimes it’s a good thing to come second. Dry beans are the second choice for western bean cutworm moths looking for a place to lay their eggs. They prefer corn at the pre-tassel stage, but if they can’t find that, then they’ll go to dry bean fields. So far in Ontario, this invasive pest is causing the biggest problems in corn, but western bean cutworm has the potential to be a serious pest in dry beans, as Michigan growers have found.
Strip cropping is a method of cultivation in which a variety of crops are sown in alternating strips in a single field. It is a type of intercropping that involves planting crops in distinct rows that can be separately managed.
Seed corn maggots took a costly bite out of many south-central Ontario soybean fields this spring. In Wellington County, some fields were decimated to the point of needing complete replanting. While seed corn maggots are not a new problem, their unpredictable occurrence, limited control options and sometimes devastating consequences make them a major and costly headache for producers.

“Are seed corn maggots the kind of pest that wipes out 50 per cent of Ontario’s soybean acreage? No. The overall per cent is relatively small. But, if you are a grower that gets hit with maggots, it’s very significant and very costly for you,” says Horst Bohner, soybean specialist with the Ontario Ministry of Agriculture, Food and Rural Affairs.

Seed corn maggots are small, light yellow maggots that feed on germinating soybean and corn seeds. Because adult flies will only lay eggs in moist, rotting vegetation and larvae need time to do maximum feeding, seed corn maggots are most damaging in cool, wet, slow springs.

Most outbreaks tend to be fairly regional. That said, predicting an outbreak remains extremely difficult.

“The biggest problem with predicting when seed corn maggots will be a problem is that we don’t have a handle on when there will be large numbers of adults. We understand that if seed comes out of ground slowly there is more time for larvae to feed. But why there were a large number of females at one time in a specific region this year, I don’t think anyone knows that. So many of these insects just cycle,” Bohner says.

Once seed corn maggots hit a crop, there is not much a farmer can do but wait to assess damage. Seed corn maggots are difficult to counter because it is virtually impossible to scout for adult flies, and there are no post-seeding pesticide treatment options.

While seed treatments tend to be effective against the larvae, gaining approval for their use can prove to be a chicken or egg scenario: to be approved, one must prove damage has caused a loss of 30 per cent or more of the stand. However, once need is identified it is much too late to counter the maggots and the benefits of a neonicotinoid treatment can only be seen in a replant.

One maggot countermeasure every producer should follow is prioritizing speedy germination and seedling emergence, Bohner says. “Think about proper planting depth, good seeding timing, adequate nutrition and disease management, good residue control. You want to do everything you can to get that seed out of the ground as fast as possible.”

Like many flies, adult seed corn flies are attracted to the odour of decay. Seed corn flies lay their eggs in freshly tilled soil, decaying crop residues, and manured fields. As such, farmers concerned about seed corn maggot infestation may want to consider no-till management. At the very least, farmers should seriously consider opting not to till under cover crops or manure within three weeks prior to seeding.

Farmers who suspect seed corn maggot infestation in their fields should look for widespread and fairly consistent damage across the field, rather than patchy or localized damage. Then, dig up seed to look for obvious physical damage and/or the telltale yellow maggots.

Because the seed corn maggot’s entire lifecycle can occur in as little as three weeks, be aware that a new generation of maggots may be primed and waiting for a second planting of seeds. If seed corn maggots are verified in a field and damage warrants a replanting, consider planting insecticide-treated seed.

It is very difficult to estimate the cost of damage inflicted by seed corn maggots on Ontario fields.

“What typically happens in Ontario is that we have considerable acreage that needs to be reseeded each year, but it’s hard to always know why it needs reseeding. It could be soil borne diseases, insects, cold stress, soil crusting. More often than not, it’s a combination of factors. Seed corn maggots are just part of the overall picture. Replanting costs money and reduces yield potential, but calculating exactly how much of that is due to seed corn maggot is almost impossible,” Bohner says.

“But, I’ll tell you this,” he adds. “Seed corn maggots are frustrating and they are costly. I’ve been doing soybean trials for 15 years. This year, we had a large experiment completely wiped out because of seed corn maggots. So I do know exactly what the farmer goes through when he sees his hard work destroyed by a hard-to-manage pest like seed corn maggot.”
Page 1 of 18

Subscription Centre

New Subscription
Already a Subscriber
Customer Service
View Digital Magazine

Most Popular