Cereals
Hybrid rye varieties have been grown on the Prairies for a couple of years now. They continue to live up to their initial promise, outshining open-pollinated (OP) rye varieties in key traits, and work is underway to help the hybrids capture a greater share of rye’s small marketplace.
Imagine yourself as a winter wheat kernel. You’re planted in the fall, germinate and grow a bit, then hibernate until spring when you start growing again. Meanwhile, fungus and insects are attacking your roots and shoots throughout the fall and spring. No wonder poor stand establishment is a major constraint for high-yielding winter wheat crops.  
Recent Alberta research shows that some wheat cultivars have a higher respose to more intensive agronomic management practices than others. This type of cultivar-specific information could help growers make more informed decisions on variety selection and management.
Not only are purple foods eye-catching, but the colour can indicate the presence of health-promoting dietary compounds called anthocyanins. AnthoGrain, a Canadian-bred purple wheat, has much higher levels of anthocyanins than regular wheat, plus it has the many other healthy compounds found in regular wheat. Now, a project involving two clinical studies is looking at just how beneficial AnthoGrain is for human health.
"Most of the barley varieties that we grow in Western Canada tend to be malt varieties; growers are hoping to get the extra premium if it makes malting grade. But only about 20 per cent of the acres sown to malting barley each year actually make malting grade,” says John O’Donovan, a semi-retired research scientist with Agriculture and Agri-Food Canada (AAFC).
The Ontario Winter Wheat Performance Trials have always been designed to give growers useful information to help them make decisions, but the historical data is equally helpful because it shows how varieties perform over time under diverse conditions. The intensive management data introduced in 2013 proved invaluable in 2016 and could have an impact on growers’ choices in the future.
Optimal fall planting conditions in 2015 resulted in approximately 1 million acres of winter wheat being seeded.  Excellent weather conditions through to November provided an opportunity for wheat to be well tillered before winter.
According to Joanna Follings, cereals specialist for the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) based in Stratford, Ont., stand establishment problems in winter wheat tend to happen depending on the year.

In 2015, Ontario producers saw excellent fall conditions for planting, and most got their crop in early, so plants were well established going into the winter.

In 2014, producers weren’t so lucky: a wet fall meant delayed planting, and to make matters worse it was followed by a cold winter. Many producers experienced problems with winter survival.

“It can be a challenge for growers to get out in to the field in a timely manner,” Follings says.

Peter Johnson, an agronomist with Real Agriculture, is currently working on studies examining the impact of soil type, seeding rates and seeding dates on stand establishment.

“Typically here in Ontario we get about 70 per cent stand establishment,” Johnson says. “We get higher levels if we seed earlier into excellent conditions. Last year we were getting fields with 85 per cent stand establishment, but typically we seed under less than ideal conditions.”

There’s a growing body of research pointing to agronomic methods that can improve stand establishment in winter wheat even in bad years, Johnson says. This year, he and technician Shane McClure wrapped up a three-year “seeding rate by seeding date” interaction study, and the data should be available soon.

But Johnson says it’s clear that the earlier producers seed, the lower their seeding rate can be. The later they seed, the higher the seeding rate should be in order to maximize sunlight interception.

“We seed ultra early, two weeks prior to the recommended date, and at that stage we recommend decreasing seeding rate by 25 per cent,” Johnson says. “Our normal target is about 1.5 million seeds per acre, and when we seed two weeks ahead of optimum date, we can drop that to 1.2 million seeds quite easily, with no impact on yield.” On heavy clay soils, he recommends starting at 1.8 million seeds per acre and adjusting seeding rates according to date from there.

“Once you’ve moved past optimum seeding date, my standard recommendation is to increase seeding populations 100,000 plants per acre for every five days past that optimum date.”

In areas prone to heavy snow loads, snow mould infestations are much more severe with early seeding dates and high seeding rates. “Lodging concerns increase when growers seed heavy seeding rates early,” Johnson says. “But with highest wheat yields coming from early seeding dates, seeding early at lower seeding rates just makes sense.”

Seed treatments?
This year, Kelly Turkington, a pathologist with Agriculture and Agri-Food Canada’s (AAFC) Lacombe Research and Development Centre in Lacombe, Alta., and Brian Beres, an agronomist with AAFC’s Lethbridge Research and Development Centre in Lethbridge, Alta., published new research pointing to the effectiveness of seed treatments used in tandem with appropriate sowing density to overcome poor stand establishment in winter wheat.

In one study, Beres and Turkington argue seed treatments are best used to offset weak, low-yielding systems.

If producers are starting with high quality seed with good germination rates, good vigour and low levels of pathogen infection, and they’re putting seed into a system with good seed-to-soil contact and using appropriate seeding rates, Turkington says the impact of seed treatments will be limited.

“Where we’ve seen seed treatments are a real benefit is when seed-borne disease, diseases that will impact germination, seedling growth or stand establishment, or diseases like smuts, are present in a field,” he says.

Turkington’s work was all done in Western Canada, but Johnson says similar results have been seen in Eastern Canada. “If you’re seeding into ideal conditions from a stand establishment point of view with no disease pressure, you may not see the benefit of seed treatments,” he echoes. “But if you get bunt in your wheat crop, that’s 100 per cent crop loss. For $3 per acre of seed treatment, or even $5 per acre, whatever that premium is, we can’t afford to take that risk.”

Johnson recommends every producer use a good fungicide seed treatment. Insecticide on the seed isn’t needed everywhere, but is more regionally isolated according to soil type and insect pressure. But he feels fungicide seed treatments are essential, even though they don’t always increase yield. “If I get dwarf bunt or common bunt in the crop, the grain comes out of the field smelling like rotten fish. The industry simply won’t accept it. That risk is simply too high,” he says.

“In terms of stand establishment, we see a benefit in stand establishment if you apply a fungicidal seed treatment under adverse conditions.”
Malting barley is a higher-value cereal crop that could be a good option for Eastern Canadian growers. A key factor in the successful adoption of this crop is the availability of varieties suited to the region’s growing conditions. Now a project is underway to identify which of the existing malting lines would be best for the east and to develop improved germplasm for further breeding work.

Thin-Meiw (Alek) Choo, a research scientist with Agriculture and Agri-Food Canada (AAFC) in Ottawa, is leading the project. He notes, “Before we started this research project, we had already identified two good malting barley varieties for Eastern Canada: Cerveza and AAC Synergy. Cerveza is on the list of recommended varieties for Quebec and the Maritimes. AAC Synergy is now being tested in the registration and recommendation tests in Quebec and the Maritimes. These two varieties have performed well in Quebec, the Maritimes and New York State. They were developed by Bill Legge at AAFC’s Brandon Research and Development Centre [in Manitoba].”

Now Choo’s project is helping to identify more and better malting varieties for Eastern Canada. Called the Eastern Canada Malting Barley Test, it runs from April 2013 to March 2018. It involves screening hundreds of advanced breeding lines and varieties from other regions to find ones with three essential traits: resistance to Fusarium head blight, resistance to lodging, and high yields under Eastern Canadian conditions.

“Resistance to Fusarium head blight is a must for successful malting barley production in Eastern Canada,” Choo says. The region’s warm, humid growing conditions favour this serious fungal disease. Fusarium head blight reduces grain yield, but more importantly it can produce mycotoxins on the grain. He notes, “The maltsters and brewers do not accept any barley grain contaminated with mycotoxins.”

The often rainy and stormy conditions in Eastern Canada increase the risk of lodging, which can result in lower yields and poorer grain and malting quality. So Choo is looking for malting lines with shorter and stronger straw that are better able to resist lodging.
And, of course, yield is a top consideration. “Any malting barley varieties must yield well in Eastern Canada. Otherwise, producers will not grow them,” he says.

Choo’s project team is testing malting barley lines from the Prairies, where most of Canada’s malting barley is grown, and some cultivars from other countries. “Every year, we have evaluated 23 lines from the Field Crop Development Centre of Alberta Agriculture and Forestry, 38 lines from the University of Saskatchewan, and 36 lines from the Brandon Research and Development Centre. We have also tested seven barley varieties from Argentina, seven varieties from Australia, and 21 varieties from Brazil,” he says.

The evaluation process involves several steps. “[First] we plant these barley lines at Charlottetown, Prince Edward Island, and compare them with our standard varieties such as Leader [a recommended feed barley variety] and AAC Synergy. Last year, we identified 26 of these lines as high yielding. Therefore, in 2016, we have planted these 26 lines at three locations across Eastern Canada: Charlottetown, Normandin, [Que.] and Ottawa.” This fall, they will be analyzing the results from the 2016 growing season, and they’ll continue the testing work in 2017. In the years ahead, very promising lines that have not yet been registered in Canada could be entered into the variety registration tests for Eastern Canada.

The project is only testing two-row barley lines. Choo explains, “Six-row barley is more susceptible to Fusarium head blight than two-row barley. Therefore, we do not encourage our producers to grow six-row barley for malting in Eastern Canada.”

Choo is collaborating on this research with Bill Legge, Aaron Beattie at the University of Saskatchewan, Patricia Juskiw at the Field Crop Development Centre, Denis Pageau at AAFC’s Normandin Research Farm, and Marta Izydorczyk at the Canadian Grain Commission. The project is funded by AAFC, the Alberta Barley Commission and the Atlantic Grains Council.

The project’s results will give eastern growers more varietal choices for malting barley production. As well, Choo will be using the superior lines identified through the testing work as parents for crossing in his barley breeding program. Promising malting barley lines from his program will be sent to the Canadian Grain Commission for malting quality analysis. Eastern growers can look forward to possible further improvements in malting varieties down the road.

If growers can achieve malting quality with barley produced in Eastern Canada, it could potentially be a very good opportunity. “Malting barley typically has a higher value than barley grown for livestock, for example. So it would be a value-added proposition for growers,” says Neil Campbell, general manager of the PEI Grain Elevators Corporation.

“I’m not sure what the potential is for malting barley production in Atlantic Canada, but it could be quite substantial because the [craft malt and brewery] business has exploded here in the Maritimes in the last three or four years. Nova Scotia alone has 40 different local breweries that use malting barley and other grains,” Campbell says.

He also points out that, in addition to Choo’s work, other malting barley research is underway in the Maritimes. For example, Aaron Mills at AAFC in Charlottetown is developing recommendations for malting barley agronomic practices and is testing modern and heritage malting varieties in Eastern Canadian conditions.

Campbell also notes the combined sales of Canadian malting barley and malt are worth about $1 billion per year. “So if the Atlantic provinces could even get one per cent of that, it’s a nice little number!”
With increasing frequency and vehemence, fingers are being pointed at farmers over the issue of nutrient runoff into key bodies of water, like Lake Ontario and Lake Erie.

Until now, the gap between agricultural producers and those who blame those producers for eutrophication has seemed unbridgeable. Farmers argue they have a right to earn a livelihood from their land. Environmentalists – and, increasingly, politicians and laypeople too – argue water quality and the good of all must override farmers’ land use needs. Now, plant breeders are working on developing new perennial cereal crops that may meet the requirements of both sides.

“There are limited options for a cash crop grower who is concerned about nutrient runoff into watersheds. They might think about planting something like grass for a considerable distance around a water body, but that might mean that they give up a considerable amount of revenue,” says Jamie Larsen, a researcher with Agriculture and Agri-Food Canada in Lethbridge, Alta., and lead plant breeder on a new perennial rye study. “In the future, an option would be to plant a perennial grain crop that would [be] productive, but also provide significant environmental benefits.”  

“Perennial grains require a change in mentality about how cropping is done. They’re different, no doubt about it. But times have changed. Perennial grains offer the potential for economic benefit, while also considering sustainability priorities,” adds Doug Cattani, a researcher at the University of Manitoba who is currently developing a perennial wheatgrass to suit Canadian growing conditions.

Though cereal grains have been treated as annuals for decades, many cereals are willing to function as perennials if given the chance. Rye, for example, is a robust and surprisingly hard to kill plant. Each plant in some varieties of rye can produce productively for three or four years. Other cereals are even longer-lived: Cattani says intermediate wheatgrass can live at least eight to 10 years, and may produce grain productively beyond the four years he has tested them for.

In addition to producing a harvestable cereal crop each year, perennial cereals also offer grazeable forage each fall, erosion control and the absence of yearly seeding-time pressure on the producer. Most importantly for those concerned about healthy water systems, perennial cereals have the potential to slow nutrient runoff in a host of ways.

“If you can have something in the ground all year round and actively growing every day of the growing season, you’ll have much less nutrient runoff than if you plant a seed in spring and pull that plant out of the ground 95 or 100 days later,” Cattani says.

First and most obviously, perennial plants capture and remove nutrients from the soil each and every day of their growing season.

In addition to the number of days they are able to capture nutrients each year, perennials also easily surpass annuals regarding the depth of soil from which they can capture nutrients and the total volume of nutrient capture. At between two and three metres in length, perennial cereal roots reach twice as deeply into the soil as do annual cereals. The longer, denser root biomass serves to capture nutrients more efficiently and more deeply in the soil, decreasing nutrient movement through the soil and limiting the need for additional fertilizer application.

Actively growing perennial cereals also help to use up water that would otherwise sit on the land in early spring, decreasing the likelihood of leaching.  

And there’s more: perennial crops’ strong roots, taller plant height and early spring start mean they are more competitive than their annual counterparts. As such, they often require far less weed management. Wheatgrass’ many tillers take competitive advantage a step forward, forming a tight, almost sod-like layer that is highly effective at limiting weeds.

Perennials excel on the disease resistance front too. The fact that they are long-lived typically means they have accrued a superior disease resistance profile that allows them to survive, resulting in fewer fungicide requirements.  

Larsen’s perennial rye study has barely begun, but already he is hopeful perennials may have a real place in tomorrow’s agricultural reality.

“The more I work with perennial grains, the more applications I see for them, from the perspective of limiting nutrient runoff to conserving soil, to saving producers input dollars and planting time. This is the next step in cropping efficiency,” he says.

For all of perennial cereals’ benefits, one fairly serious drawback remains: because a perennial plant must put some energy into its root reserves, it cannot yield as much as its annual cousin. Currently, perennial cereal crop yields are significantly lower than annual cereal crops. Cattani’s intermediate wheatgrass, for example, yields between 10 and 20 bushels per acre.
That said, breeders are already making significant leaps forward in perennials’ yield potential. And, because there is increasing market demand for more sustainable agriculture, farmers might capture better prices for perennial grains compared to conventional annual grains.

“Perennial grains are not going to be as productive as annual cereals. That’s the truth. But it could be a high-value grain that some companies might be willing to pay a little extra for. That’s the potential,” Larsen says.

“There is certainly interest in perennial grains. Quite a number of producers would probably be willing to grow a perennial cereal if we could provide them with a variety that is adapted to their growth area, that offers good yield potential for at least three or four years, and that has a good agronomic package ready when we release the variety,” Cattani says.

Cattani expects perennial cereals are likely still a good number of years from commercialization.

“I’m excited. I see the potential,” he says. “But having said that, I think we’re 10 to 15 years away from releasing an intermediate wheatgrass for our regions. We can’t say ‘plant it’ when we don’t yet know how best to grow it. I think perennial cereals are an area of research you’ll see explored relatively significantly over the next 10 years.

For naysayers who are pessimistic about the potential for a lower-yield crop to find success in Canada, Cattani says: “Before we had canola as a major human-use oil, a lot of people said it had too many issues. But canola is a good example of what is possible when we apply resources to a potential crop to help solve key issues.  

“What makes the concept of perennial cereals interesting is – even as it is now – it is a much more productive option than simply planting a forage grass, and it’s really sustainable. It has the potential to make a lot of people with conflicting priorities happy.”
When the title of “bread basket of the world” was coined, settlers were breaking up long established prairie and plowing down the perennial grasses that made the soil rich. Today, researchers in Canada and the United States are looking to re-establish perennial wheatgrass as a means for soil recovery and food production. Collected from Siberia, perennial wheatgrass could, when adapted and bred for consistent North American production values, be the next grain crop to sweep across the land.

Of numerous iterations of wheatgrass, the most promising and the closest to field production is Kernza, developed by The Land Institute in Kansas. Now under examination in Western Canada for adaptation to this climate and growing conditions, Kernza is a new class of grain that will eventually spawn varieties for all growing regions in Canada. But growers need patience because it could be a decade before the first variety is perfected and seed is available.

“We are narrowing down our germplasm and will be harvesting plots this year,” says Doug Cattani, the lead researcher working with Kernza in Canada. The University of Manitoba plant scientist adds there is a lot to learn about Kernza production besides developing varieties adapted to the Canadian growing system.

Ideally, a perennial grain would be left in the field similar to forage for a number of years. The heads would be harvested annually, but the crop would continue to grow. It’s not known how many crops can be harvested before production decreases when the field can be turned into forage for a year or two. 

“Perennial wheat has deep roots that can reach deep moisture,” explains Jamie Larsen of Agriculture and Agri-Food Canada in Lethbridge, Alta. “It might work well in less productive areas to reduce erosion and build up the soil. Or it could be planted along a stream to protect the area, but there would be a crop as well. Typically, it is also disease resistant and it will compete strongly with weeds.” While it is in the field, it will be useful to break up weed and disease cycles while also replenishing the soil.

“From a seed industry perspective, I think this could look like a model similar to forage crops,” suggests Ellen Sparry, genetics and general manager for C & M Seeds in Palmerston, Ont. “I can see this potentially having a fit for soil recovery and for drier areas.” From a seed standpoint, she says, end use and production would have to match the annual wheat varieties that growers currently rely on.

This is where Cattani is focusing his attention. He is selecting and crossing to get Kernza varieties that are well-adapted to Canada’s growing areas, that have consistent quality and yield year after year, and which offer all the benefits promised by annual crops.

“We need to work out the system,” Cattani admits. “What do we need to do to get it ready for the following year? We can harvest it and cut it back, but what happens if we cut it right to the ground? We need to look at post-harvest management to see if we can get a consistent second and third crop.”

Larsen says perennial grain crops will mine moisture and nutrients lower in the soil strata because they put down a long root system. However, he adds, there may still be a need to add nutrients. But how much?

“You will get better drainage, better soil health, access to nutrients that are below the access of annual crops,” Cattani continues. “There’s a host of benefits that could accrue for future crops when perennial grains are included in the rotation and we want to be able to maximize the yield every year. But we’re still in the initial stages of development and we are at least 10 to 15 years away from a variety with a known production package to give producers.”

Nevertheless, Sparry believes it is good for growers to know about Kernza and to begin thinking about how it could fit in their operations. “From a seed standpoint, it would market similar to forage,” she suggests.

“Certainly, this will fit in any operation,” Larsen adds. There are also many potential uses for Kernza, he says, from basic livestock feed to bread-making. A company in the United States has also incorporated Kernza into beer production.

Unlike current crops that have been tweaked over time and continue to be improved, Kernza and other perennial grain crops need to be perfected before they enter the field, from production recommendations to management advice to end use requirements. Cattani reports there is an issue with kernel shattering in some Kernza varieties and he is working on selections to minimize that while also looking at yield potential and field readiness.

As Cattani prepared to harvest his plots of Kernza in August, he considered the best methods to accomplish the task and how to prepare the plots for production in 2017. 

“We’d like to get three seed yields per crop no matter what the growing conditions are each year,” Cattani says.

For his part, Larsen would like growers to learn about Kernza and other wheatgrass prospects. He suggests they need to consider how and where these new grain crops could fit into their operations. Those with experience with forage will have a good idea how Kernza can be managed, but there will still be some adjustments they will have to make to ensure continued success for both human consumption and possible grazing for livestock. The researchers believe it would be ideal if the two could be accomplished simultaneously each year, but, again, that possibility still needs to be examined.

When something as promising as Kernza comes along, it’s difficult to wait until there is seed and a complete set of recommendations to ensure success in the field. Research in both the United States and Canada suggests Kernza is the closest to field readiness of the perennial grains. In the near future, when perennial grain is in a rotation, it could be possible to recover soil to the standard early settlers flocked to the untouched prairie to get. It may have taken 100 years to undo the value in those untouched soils across Canada, but within a decade a solution to revisit those heady days of early crop production could be field-ready.
Peter Johnson has a theory: if you don’t invest dollars in spring barley breeding, you won’t get the results you want.

In Ontario, 110,000 acres were seeded to barley in 2014, with a farm value per bushel rated at $4.16, according to the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA).

Even if barley has yet to catch up to higher-value crops in Ontario, Johnson — OMAFRA’s former provincial wheat specialist — hopes to increase the value of the crop for growers by updating nitrogen (N) recommendations.

Along with Shane McClure, a research lead for the Middlesex Soil and Crop Improvement Association, Johnson has just begun the third year of a three-year trial looking at potential synergies between nitrogen response and fungicide interactions in spring barley in Ontario.

“What we’re hoping to find are ways to increase yields on spring cereals to make them more competitive economically and keep them in farmers’ rotations,” Johnson says. “Spring cereals have a fit in Ontario agriculture, but the yield increases have not kept pace with corn, so acres continue to drop. We were hoping to find a good synergy between N and fungicides in barley, oats and spring wheat, so that we can find ways to increase yields and make them more profitable for growers.”

The nitrogen-fungicide synergy in winter wheat was “virtually proven” by 2010 in Ontario, says Johnson, following research he began in 2008 with colleagues David Hooker and Jonathan Brinkman. Since then, they’ve performed multiple studies to try to finish the response curve with and without fungicides.

For the spring barley study, four field scale trials were established across southern Ontario in spring 2014, followed by six in 2015, each using two replicate, randomized N rates, both with and without fungicides. Plots were also set up at New Liskeard and Winchester. The studies hoped to show — as in winter wheat — a strong synergy between nitrogen and fungicide applications.
This year, the funding dried up, but Johnson and McClure are continuing the study regardless.

“We’re essentially doing it for free. We thought it was important enough to do the third year,” Johnson says.

One plus one equals two
The results were different than expected: in most plots, the researchers did not observe a strong synergy between N and fungicide applications.

“In southern Ontario we saw a clear yield response to N, and we saw a clear yield bump to the fungicide, but with the synergy, it’s one plus one doesn’t equal two,” Johnson says. “In winter wheat on our best varieties we’ve seen one plus one can equal 3.5. In spring barley, one plus one equals two. Full stop.”

There are two potential reasons for this, Johnson believes: climate and genetics. The heat in southwestern Ontario tends to be a limiting factor. But genetics are even more telling.

“If you look at the trend lines in Ontario, winter wheat has gone up at about a bushel per acre per year over the past 35 years, while spring barley has only gone up at 0.2 bushels per acre per year,” he says. “The genetics aren’t there yet to show that synergy.

“We have AAFC breeders who are supposed to breed for all of Eastern Canada, but the barley breeder at the University of Guelph was rolled into the winter wheat breeder position. In terms of private interests, the one company doing that barley breeding has stopped doing it. The dollars invested in barley breeding in Ontario — there’s no comparison, compared to wheat.”

But the study’s results are not all negative. In New Liskeard, where the climate is much more suited to spring crops, a small synergy was observed between N and fungicide in spring barley.

The New Liskeard data set was small, but much higher final yields (115 bushels per acre) were observed there, along with evidence of a small synergy between N and fungicides. “That’s very hopeful, so now what we should be doing is looking at that synergy across varieties,” Johnson says.

“Based on the average data 80 pounds of N with fungicide was the most economical treatment in southwestern Ontario, while 50 pounds of N with fungicide had the highest rate of return at Winchester (eastern Ontario),” concludes Johnson and McClure’s Crop Advances Field Crop Report for the study. “New Liskeard had the highest response to N with 127 pounds of N and fungicide being the most economical treatment.”

The report concludes N response was significantly greater than recommendations in the Agronomy Guide in both the southwestern and New Liskeard regions, and so the recommendations require further assessment.

The data from this study will be brought to the Ontario Soil Management Research and Services Committee (OSMRSC), which makes fertility recommendations for the province, in hopes they’ll update the rates.

“Growers are certainly looking at this data and asking if it can work for them — they’re experimenting with higher rates than the official recommendations,” he says. “The recommendations are based on old varieties and the climate from the 1970s and 1980s.”

McClure says he was surprised by the high yields — and the high maximum economic rate of nitrogen — in the two years of the trial. “I didn’t expect the maximum economic rate of nitrogen to be as high as it was. I think it might have something to do with how high the yields were in general over those two years. They were fairly cool summers. I’m interested to see what happens if we see the same results as we did the last two years in a hot, dry year,” he says.
Mildew guidelines will be adjusted in Western Canadian milling wheat classes to allow for an increased presence of mildew in the visual guides and standards.
Public and private plant breeders continue to bring new cereal varieties to market, with improved yield, disease resistance, and agronomic performance. Available in commercial quantities for the 2017 planting season, these new varieties continue to push yield boundaries.
“Along the entire eastern seaboard, craft breweries and craft maltsters are starting up, and everybody wants to know how to achieve malting quality with barley grown on the East Coast,” says Aaron Mills, a research scientist with Agriculture and Agri-Food Canada (AAFC) at Charlottetown.

Very little research has been done on malting barley production practices in Eastern Canada – Mills calls it “uncharted territory.” So he is leading a project to develop information that eastern growers need to produce this relatively high-value cereal crop either as a commodity or for craft brewery niche markets.

The impetus for the research came out of Mills’ long-standing interest in brewing.

“I’ve been brewing at home ‘all-grain’ [a brewing method] for over a decade, and I also worked in a craft brewery for six months after I finished my PhD. So I’m familiar with the industry and with the need for local ingredients. When I started working here in P.E.I., I noticed there wasn’t a lot of malting barley being grown. So we decided to give malting barley a shot and see what we could do.”

He notes, “In P.E.I., we grow approximately 60,000 acres of barley. That is all feed barley. Malt barley and feed barley are almost like two different crops because the management is so different. You really have to baby the malting barley; a fungicide program is a very important part of growing malting barley on the East Coast.”

Mills’ five-year project (April 2013 to March 2018) is funded by the Alberta Barley Commission, the Brewing and Malting Barley Research Institute and AAFC under the National Barley Research Cluster.

The project’s main objective is to examine how different production practices affect malting quality characteristics. “We would like to provide information for growers to make it easier for them to successfully produce a high quality crop. We want to generate some local data that can serve as a benchmark for local growers,” Mills says.

“We’re looking at the influence of seeding rate and fertility rate on two malting barley varieties from out west, and we’re looking to see if the response is similar at five sites in eastern North America.”

The five sites provide good coverage of the cereal growing region in the east: Princeville, in southern Quebec (with Semican); Ithaca, in upstate New York (with Cornell University); Ottawa, in eastern Ontario (with AAFC); New Liskeard, in northern Ontario (with the University of Guelph); and Harrington, P.E.I.

The two barley varieties are Newdale and Cerveza. Mills says, “Newdale was the industry standard [for malting barley] for a long time, and it seemed to do really well in some of the earlier disease screening trials that were done here. Cerveza is a newer variety that seemed to do really well under eastern growing conditions.”

The project builds on a previous malting barley study in Western Canada led by John O’Donovan, an AAFC research scientist, and follows similar methods. The treatments compare seeding rates of 200 and 400 seeds per square metre, and nitrogen fertilizer rates of zero, 30, 60, 90, and 120 kilograms per hectare.

The project team is examining the effects of these treatments on such characteristics as crop growth, yield, disease, lodging, days to maturity, percentage of plump seed, and protein content.

As well, the Canadian Grain Commission’s Grain Research Laboratory is malting the harvested grain and testing it for properties that are important for malting and brewing (such as fine-grind extract, Kolbach index, wort beta-glucan, diastatic power and alpha-amylase).

Mills explains that seeding rates between 200 and 400 seeds/m2 are generally recommended for malting barley. O’Donovan’s research in Western Canada found that 300 seeds/m2 was the optimum seeding rate for malting barley yield and quality characteristics, such as protein level and kernel uniformity. Seeding rates that were too low tended to increase the number of non-uniform kernels and increase tillering, which could lead to delayed maturity. Seeding rates that were too high not only increased input costs but also tended to increase the risks of poorer yields and lower kernel plumpness and didn’t improve protein or kernel uniformity.

Nitrogen rates also tend to be a balancing act between too much and too little.

O’Donovan’s research showed higher nitrogen levels increased grain yield and kernel weight, but had a negative effect on malting quality characteristics such as protein content.

Mills’ results to date show higher nitrogen rates are not good for malting quality under eastern conditions. “The higher rates of nitrogen translate into a much higher protein level. For malting barley, you want the protein content to be around 11 to 13.5 per cent. With some of the higher rates of nitrogen, the protein content was at 17 per cent, so it automatically kicks the grain out for malting quality.”

He also notes, “It has been difficult to dial in the appropriate level of fertility that is optimum for both yield and quality.”

Another important preliminary finding from Mills’ project is that the crop preceding malt barley seems to have a tremendous effect on malting quality. “For example, buckwheat seems to be a really good crop to precede malting barley. But crops like a clover are absolutely terrible for malting barley quality.”

He thinks the main factor in the poorer quality after a clover crop is likely the residual nitrogen in the soil, but he suspects some other factors may also be playing a role.

Mills is also taking part in some multi-agency research to test modern and heritage barley varieties in eastern North America. He explains that Ashley McFarland of Michigan State University has formed the Eastern Malt Barley Working Group, which stretches from Illinois to P.E.I.

“Everyone involved is working to find out how to get acceptable yield and quality to produce malt barley locally,” Mills says.

In one component of the group’s work, Richard Horsley of North Dakota State University is leading a Brewers Association-funded project, the Eastern Spring Barley Nursery, to evaluate about 25 spring barley varieties at about eight sites in the east.

Another component involves partnering with Chris Ridout from the John Innes Centre in the United Kingdom.

Mills notes, “This research institute has brought 80 barley accessions out of long-term storage. They’ve already fully developed the value chain for one heritage barley variety, ‘Chevallier,’ for modern use in the craft beer industry in and around Norwich, England, as well as a few larger craft breweries in the U.S., including Sierra Nevada and Goose Island.” Researchers in the working group are evaluating these U.K. heritage varieties at their sites.

He thinks heritage barley varieties could be of particular interest to craft brewers. “The varieties would have to be at least as good as the ones they are buying now. But if they can also attach a story to the barley, I think that’s part of the appeal for the brewers and the brewery owners. Craft brewers are also interested in developing beers with different flavour and aroma characteristics, and the use of heritage barley varieties may be one way to develop those qualities.”

Mills concludes, “We’re trying to evaluate these varieties and hammer out the agronomy as quickly as possible. For example, we have three craft maltsters that are hoping to open up this year in P.E.I., so there is going to be some local market demand in the near future. It would be nice if we had some locally grown barley to put through those maltsters and get our growers into that value chain.”
Page 1 of 47

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace