Agronomy

Add just enough fertilizer, and crops thrive. Add too much, and you may end up with contaminated surface and groundwater.
Understanding soil nutrient dynamics in a field is about more than numbers, and a new approach, using a spreadsheet with built-in formulas and a new bioassay, is intended to address some of the problems with conventional soil test numbers.
The Soil Conservation Council of Canada (SCCC), along with Canadian senator Rob Black, University of Guelph's Dean Rene Van Acker, and John Poel from Heartland Soil and Crop, will be planting cotton underwear in the ground to reignite the importance of soils and soil health on July 23, 2018 in Elora, Ont.
In the 2015 International Year of Soils, two key global soil resources were published by the United Nations’ Food and Agriculture Organization's (FAO) Intergovernmental Technical Panel on Soils (ITPS). The first Global Soil Partnership (GSP) effort was a revised World Soil Charter and the second was the first ever State of the World’s Soil Resources Report.
Data collected from the Innovative Farmer Association of Ontario's Compaction Action day has been compiled and summarized, and OMAFRA's Ian McDonald explains some of the results in his latest post on FieldCropNews.com. | READ MORE
While most producers are wrapping up planting this spring, the Top Crop Manager team has soil on the mind. We’ve spent much of the very long winter and even shorter spring season planning our 2019 Soil Management and Sustainability Summit (to be held Feb. 26, 2019 in Saskatoon, and March 11, 2019 in Ottawa – check out www.topcropsummit.com for more details).
A research project in southwestern Ontario exploring the benefits of strip tilling is showing promising results in better managing fertilizer and improving crop yields by ensuring the fertilizer stays where it is most needed – with the plant.
More farmers are showing interest in and using an approach called bio strip-till, where specific cover crops are planted in individual strips after the harvest of an early season crop.Goals for using this approach typically include a combination of creating a dark strip in the field with residue to simulate strip till, opening up the soil for cash crop root growth, to keep competitive winter annual species like cereal rye out of the cash crop planting row, and residue management to keep problematic residue out of the planting strip.For the full story and a few examples of bio strip-till being used by farmers in North Dakota, click here.Related: Strip tilling for higher yields
The harvest of 2016 left many fields deeply rutted from combines and grain carts running over wet land. Many farmers had little choice but to till those direct-seeded fields in an attempt to fill in the ruts and smooth out the ground. But where it was once heresy to till a long-term no-till field, a few tillage passes won’t necessarily result in disastrous consequences.
Jeff Schoenau, a soil scientist with the University of Saskatchewan was involved in a research study conducted in the mid-2000s that compared four tillage treatments that were imposed on no-till fields (longer than 10 years) at Rosthern (Black soil), Tisdale (Gray soil) and Central Butte (Brown soil), Sask.
All agronomy recommendations are generalized. They can be specific to a region, but every farm is different,” says Chad Anderson, Ontario Soil and Crop Improvement Association (OSCIA) director for the St. Clair Region. “I have a lot of livestock and use a lot of manure, so my [nitrogen] rates are different than a farm that doesn’t use a lot of manure. The thing about doing your own testing is that it gets away from that generalization.”
"A lot of Manitoba soybean growers are using tillage to try to extend their growing season by warming up and drying out their soils earlier in the spring. They want to be able to plant earlier so their soybeans will have a good chance of maturing before a fall frost arrives,” says Yvonne Lawley, a professor of agronomy and cropping systems at the University of Manitoba.
While applying fertilizer at the time of seeding has many benefits, it is important to use the right amount. Mark Cutts, crop specialist at the Alberta Ag-Info Centre, evaluates placement, impact, and types of fertilizer. “Applying too much fertilizer with the seed can impact crop emergence,” says Cutts. “To ensure seed-placed fertilizers are being managed properly, producers need to understand the factors that influence their impact.”
Times change and so do cropping practices, but century-old cropping system experiments continue to give back, thanks to the foresight of researchers who established and maintained the plots for more than 100 years. A recent analysis of nitrogen (N) inputs and removals found a surprising result in a long-term study in Lethbridge, Alta. Nitrogen removal in three different wheat rotations could not be solely attributed to N fertilizer or mineralization.
Fertilize in fall or spring? That’s the question winter wheat growers face every year at seeding time. The Western Winter Wheat Initiative gives suggestions and inputs. | READ MORE
Fertilizer is a costly input needed to optimize crop production. Understanding how fertilizer reacts in soil is important to optimize use and efficiency to grow high yielding crops. It is also important for farmers to understand the short and long-term effects fertilizers can have on soil chemical and biological properties.
Corn is a heavy user of phosphorus (P) and is sensitive to zinc (Zn) deficiencies. In northern corn growing areas typical of the Canadian Prairies, early season cold soils may limit P availability, especially on soils with high residue cover. Additionally, corn following canola, which does not host arbuscular mycorrhizal fungi (AMF), might also have early season P and Zn deficiencies.
Some Prairie farmers were fortunate enough to have good moisture conditions to band anhydrous ammonia or urea last fall to get a jump on spring seeding. But for the majority of farmers, dry conditions in many parts of the Prairies may mean adjustments to nitrogen (N) applications.
In 2018, Canadian farmers reported seeding less land to canola and soybeans - crops that were both at record levels in 2017, according to the results of Statistics Canada’s June Field Crop Survey on seeded areas.
Several regions of Quebec will start planting quinoa following the success of Ontario producers and processors of quinoa.
Highlights from Ontario Field Crop News' latest crop report include stripe rust found in the St. Mary's area, excessive rainfall resulting in some re-planting, edible bean planting at 30 per cent complete and winter wheat, canola and forages progressing well. | READ MORE
In the latest CropTalk update, OMAFRA shares general guidelines for scouting alfalfa and why crop heat units (CHU) are not effective for alfalfa. Scouting alfalfa helps growers stay ahead of emerging problems, correctly time harvests and make better decisions when planning future crops. | READ MORE
Recent widespread rains and warm temperatures throughout regions in Manitoba result in rapid crop growth. Manitoba Agriculture reports that seeding progress is estimated at 99 per cent complete.
Planting of all crops is much further along than last week, although the general comments about slow progress on fine textured soils are still applicable. Regions with clay soils are dry on top but gummy below, so delays continue. There is rain in the forecast this week for much of southern Ontario so further delays are a possibility.CornWhile planting is mostly complete in many parts of the province, operations continued over the past week on finer textured soils and localized areas which had been receiving frequent rainfalls. Georgian Central region is reported to be close to 75% complete while growers in parts of Kent, Essex and Lambton are continuing planting as well. This has been the first window of significant corn planting on finer textured soils in Essex, Lambton, Elgin and Haldimand/Niagara areas which are pushing hard to catch up before the next rainfall.Staging is variable depending on planting date. While some corn is still being planted, a large portion of the crop is in the V2-V3 stage, with more advanced fields approaching V4 to V5. Warm weather and the good soil conditions for the majority; have resulted in reports of excellent, uniform stands across most of the province.SoybeansIn regions where corn planting is complete, growers are pushing through completion of soybean acres as well. Soybean planting is estimated to be around 80% complete. Planting progress on heavier soils continues to move slowly, including in Essex, Lambton, and parts of Haldimand and Niagara.The heat over the past week is encouraging soybeans to emerge within a week of planting. Most soybeans are currently at the cotyledon to unifoliate stage, and earlier planted fields are in the first trifoliate stage. Populations are uniform and looking good, except on heavier textured soils where crusting has become a problem. Leaving a thin stand that is uniform is often more profitable than replanting. On most soil types, do not replant a stand of more than 222,000 plants/ha (90,000 plants/acre), in 19 cm (7.5 in.) row spacing. Heavy clay soils need a minimum of less than 250,000 plants/ha (110,000 plants/acre) before a replant is worthwhile.The warm weather has led to fast growth of weeds, and in some cases soybeans emerging before burndown herbicide treatments were applied. Where soybeans have emerged, there is a risk of crop injury with many of the herbicides commonly tank-mixed with glyphosate. Some weeds like lamb’s-quarter have been observed moving from cotyledon to 4 leaf stage within two days. Note weed growth stages in your field and plan to time herbicide applications early enough to get good control.CerealsMany winter wheat fields are variable in colour (Fig. 1). It is suspected that non-uniform spreading of urea and ammonium sulphate, and resulting sulphur deficiency are the cause. Although the fertilizers may be blended, they have different densities and may not spread evenly when mixed. The majority of acres are between flag leaf and early boot with some reaching heading growth stages. Other than a few fields with mildew, there are essentially no reports of diseases in the crop, so fungicide applications at the T2 timing may not be highly beneficial this year. The crop is moving quickly toward heading, and so far models are predicting low risk of Fusarium head blight.Figure 1. Sulfur deficiency in wheat. posted as soon as possible on the Field Crop News website at: http://fieldcropnews.com/category/crop-report/Spring cereals are generally at the 3 to 4 leaf growth stage with herbicide applications going on.Cereal leaf beetles (CLB) are reaching threshold levels at some locations, despite being quite small and still difficult to spot (Fig. 2). Control is warranted if an average of three larvae per tiller is found before boot stage. One CLB adult or larvae per stem warrants control after boot but prior to heading. If significant feeding is taking place on the flag leaf in the early heading stages, control may be warranted.Figure 2. Cereal leaf beetle larva and feeding damage on wheat. posted as soon as possibleon the Field Crop News website at: http://fieldcropnews.com/category/crop-report/Forages:Forage producers in the southern half of the province have been busy harvesting the first cut of hay, but there are delays in the north and northwest. Rainy River is on track to harvest at the beginning of June. Cooler conditions in Thunder Bay District have delayed harvest by about a week and excessive moisture through Algoma District are resulting in a two- to three-week delay. Where there are delays, the grasses in hay mixtures are getting ahead of the alfalfa so there will be a difference in maturity at harvest.In more southern regions the forage crop grew quickly and outpaced the alfalfa weevil larvae that were slow to develop. It is important to scout the regrowth after first cut as the weevil will start to reach the more damaging stages of third and fourth instars. The characteristic symptom is the alfalfa plant not “greening up,” due to weevils feeding on the developing crown buds. The presence of two or more active larvae per crown, or four to eight larvae per 30 centimetre by 30 centimetre section (one square foot) indicates a need to spray the stubble with insecticide. More information on alfalfa weevil is available in the Agronomy Guide for Field Crops. CanolaSeeding of canola is essentially complete. There had been delays in northern regions because of late April snow and wet conditions. In Temiskaming District, most canola is yet to emerge or has just emerged, and most canola has emerged in West Nipissing. Earlier planted acres in Eastern Ontario and Bruce, Grey and Wellington counties is between the one and four-leaf growth stages.Flea beetles have not been noted in the northern regions yet, but are present in many other canola growing regions. So far pressure appears to be low and seed treatments are holding flea beetle back. Insecticide applications should not be applied until at least 25 per cent damage is observed. Once canola reaches the four-leaf stage it is usually beyond economic damage.Swede midge have been observed in Elora and Shelburne, so growers should have pheromone traps in place and check them every few days. Refer to past articles on FieldCropNews.com for information on managing swede midge during early canola growth stages.Dry edible beansPlanting of dry beans is approaching 25 per cent complete. Most bean acres are on well-drained ground and there has been no risk of frost in the past week or more, so growers have taken the opportunity to get a bit of a head start. June 1 is typically the optimal planting time, but seeding into mid-June is acceptable. Ideally, adzuki beans should be planted by now as they take the longest to mature. Cranberry beans are the shortest season class of beans and can be planted into mid-June. Some fields are getting a bit dry; beans should be planted to moisture up to a maximum of 2.5 to three inches, otherwise wait for some rain. Regions that are expecting a storm should wait until after any pounding rain to plant so as to minimize issues with crusting.
In Ontario there are a few pests to be concerned about before crops are harvested. OMAFRA's field crop team breaks down how to look for and treat Western bean cutworm, bean leaf beetle, stink and tarnished plant bugs in their latest crop report. 
A research scientist at Agriculture and Agri-Food Canada in P.E.I is investigating natural ways to deal with pests that damage cabbage, canola and potatoes. 
Armyworm has been spotted at low levels in winter wheat fields, increasing the need to scout for this pest in spring cereals and mixed forages.
Cabbage seedpod weevils (CSW) are being found in spring canola, and the key to protecting your crop yield is to prevent adult CSW from laying eggs in newly formed pods.
Flea beetles and cutworms continue to be the main insect concerns, according to John Gavloski in the latest Manitoba Insect and Disease Update. Foliar insecticide applications are occurring in many canola fields and some second insecticide applications to control flea bettles. There are also more reports of reseeding of canola because of feeding by flea beetles, particularly in the Southwest and Central regions. There are also reports of insecticide use for cutworm in oats, wheat, canola, corn, sunflower and dry beans. Now is the time for cutworm feeding to intesify as cutworms get larger and their feeding more noticeable. Some of the heaviest feeding seems to be in the Central region and southwest Manitoba. The update also warns of early season infection of blackleg in canola, especially if the crop endured damage from hail, wind, frost or insect feeding. The question for growers is whether or not to use fungicide at the herbicide timing to protect their crop from blackleg infection. The update cites studies that show early fungicide application can reduce disease and increase yield. However, the growing conditions present in the studies are specific and there are other factors to consider. | READ MORE
With the loss of effective insecticides (e.g. lindane), wireworms have re-emerged in recent years as primary pests of potato, cereals and vegetables. Wireworms are the soil-dwelling larval stage of the click beetles (Elateridae). In this Insect of the Week, learn more about identification, scouting and management options. | READ MORE
Recent rains result in increased risk for root rot, as well as black point or smudge in harvested wheat. Winter wheat yield reports are below average, but yield and quality are better than expected considering the heat and moisture stress endured throughout the season in Ontario, according to OMAFRA's latest crop report. 
Prairie cereal growers in warm, humid zones will be on the lookout for Fusarium outbreaks in the flowering stage. 
Blackleg disease is on the rise. Research scientist Gary Peng, with Agriculture and Agri-Food Canada (AAFC) in Saskatoon, says tighter canola rotations have meant an increase in virulent races of the blackleg pathogen.
Across most of the Prairies, cereals grown in shortened crop rotations will continue to be vulnerable to Fusarium head blight (FHB) as a result of more severe FHB incidence in 2016, according to Alberta Agriculture and Forestry's update. 
Early season root rot has been reported in both soybeans and sunflowers, according to Manitoba Agriculture's Insect and Disease update. 
Whether or not to use fungicide at the same time as herbicide to protect from blackleg infection depends on a number of factors. The most recent disease update from Manitoba Agriculture includes questions growers should ask themselves when it comes to protecting their crop.
Presented by Breanne Tidemann, Agriculture and Agri-Food Canada, Lacombe, Alta., at the Herbicide Resistance Summit, Feb 27-28, Saskatoon.In order for harvest weed seed control (HWSC) to be effective, weed seeds still have to be retained on the plant at the time of harvest. If they’ve already dropped to the soil, they’re already in the seed bank. The weed seeds also need to be at a height where they can be collected by the combine. For example, chickweed is very low growing and its seeds are very low to the ground. Most producers don’t cut that low to the ground because of risk of damaging their equipment, so chickweed would not be a good candidate for harvest weed seed control.Harvest weed seed control also means being able to get the weed into the combine. An example is a big tumbleweed, such as kochia. If the tumbleweed won’t feed into the combine and goes over top of the header, then you won’t be able to get the seeds into the combine for harvest weed seed control.There are different methods of harvest weed seed control. Some of them have been scientifically evaluated in Australia. One of the most common methods is narrow windrow burning. The straw and chaff are dropped into windrows using metal chutes that are attached to the back of the combine. It’s cheap and easy to implement. But there are environmental impacts because it does involve burning. From a practical point of view, it may not work in western Canada, but it is used a lot in Australia.Chaff carts were originally developed in Canada. The Australians have modified Canadian chaff carts and use a conveyer system instead of a blower system to move the chaff to the cart. They’ve also adopted new technologies to make burning or collection easier and more efficient. Some of the chaff carts are programmed with GPS to dump the chaff in a certain area of the field to be grazed or burnt. There was one Australian producer that commented he’s been using a chaff cart for 15 years, and about 10 years in he started seeing annual ryegrass that was much shorter, much lower to the ground and was dropping its seeds much earlier. So this is still a selection pressure. You will select for resistance to these methods if it’s what you’re relying on to control your populations.The bale direct system bales chaff and straw directly behind the combine into a square bale. The square bales are removed from the field, taking the weed seeds with them. The loss of the residue from the field can be detrimental in terms of nutrients loss. And there is potential for transport of weed seeds in the bale from one region to another, potentially moving herbicide resistant weeds with the bale. The other issue in Australia is one producer started doing this and he saturated the entire market. The bales can also be pelletized to produce pelletized sheep feed, but again it’s a relatively small market. So market can be an issue with this methodology.The Harrington Seed Destructor uses a cage mill to grind the chaff and weed seeds. The cage mill has two counter-rotating plates that spin very fast in the opposite directions. The weed seeds go in to the middle of the mill and have to move from the inside out to continue to move through the system. The straw moves along a conveyor belt and goes through a spreader at the back. Only the chaff is processed through the cage mill. The disadvantage is that the first model was towed behind the combine and required a lot of horsepower.The tow-behind model was always intended as step one. The Integrated Harrington Seed Destructor (iHSD) is mounted on the combine and uses the same cage mill system. The integrated model had several improvements. Instead of having the two counter-rotating plates there’s only one rotating plate and one stationary plate, but that rotating one turns twice as fast. It is a hydraulically driven machine and takes about 80 horsepowers from the combine to run this machine.A new combine mounted seed impact implement was first announced January 2017. The Seed Terminator is competition to the Harrington Seed Destructor. It uses a slightly different type of mill called a multi-stage hammer mill, but it works on essentially the same idea of crushing or grinding those seeds so that they’re dead and can’t grow the next year. This is mechanically driven rather than hydraulically driven. In terms of price differences, the original tow behind Harrington Seed Destructor was about $200,000. The integrated Harrington Seed Destructor is somewhere around $150,000. The Seed Terminator is about $100,000. So what you’re seeing is as these competitors come to the market that price point is dropping, and we do expect that to continue.Chaff deck or chaff tramlining works in a controlled traffic system. The idea is to put chaff on the permanent tramlines so if weeds grow there isn’t much impact on overall yield. The chaff in the tramline is also driven over multiple times, which can impair weed growth, and there is potential for seed decomposition in those tramlines. What farmers have seen is that there are fewer weeds growing in the tramlines, but it hasn’t been scientifically evaluated at this point.Chaff lining can still be used outside of a controlled traffic system. The chaff is placed in a narrow row to decompose instead of spreading the seeds across the entire field. However, there is potential for some seeding or emergence issues if you’re seeding through this concentrated chaff row. It hasn’t been researched, but a lot of producers are adopting this in Australia as their first step in harvest weed seed control because it’s inexpensive and easy to implement. The Australian experience In Australia, a 2016 survey of 602 growers were asked about their adoption of narrow windrow burning, chaff carts, chaff tramlining, the bale direct, and the HSD. The Seed Terminator and integrated Harrington Seed Destructor were not released at the time so they don’t show up in the survey. Across Australia 43 per cent of producers were using some method of harvest weed seed control. Narrow windrow burning was the most common. In Western Australia that number goes up to about 63 per cent. Western Australia is essentially where all of these methods were developed. Western Australia is really the epicentre because of herbicide resistance, and harvest weed seed control is spreading out from there. The adoption of chaff tramlining this past harvest has skyrocketed. There is a lot more discussion about different systems on social media, and a lot more discussion about what works and what doesn’t work than we’ve see in past years. If that survey was to be redone I think we would see some of the tramlining and chaff lining skyrocketing.Results from the same survey show that 82 per cent of producers said they expected to adopt some form of harvest weed seed control in the next five years with 46 per cent expecting to use narrow windrow burning. More producers would like to be using the iHSD, but they had concerns about the cost and the perception that it was unproven in terms of weed kill. The perception of unproven control of weed seeds is interesting because weed kill is where there is the most research. Research has been done in Australia to show how effective harvest weed seed control was on controlling annual ryegrass populations in “focus paddocks” or “focus fields.” The research compared crop rotations where harvest weed seed control was used in 38 per cent of crops compared to rotations where it was only used in 11 per cent of crops. The ryegrass population was managed far more effectively where harvest weed seed control was used, and it has stayed very low.Effects of HWSC in Australia: Photo courtesy of Michael Walsh. Potential in Canada In Western Canada we’ve believed that the physical impact implements that destroy seeds are most likely to have the best fit. They don’t require the burning, and it has some scientific testing behind it that shows it’s effective. So that’s where researchers have focused efforts in terms of testing a method for Western Canada. We looked at the top 10 weeds in Saskatchewan and gave them a seed retention rating -- how well does the weed holds onto those seeds until harvest. A number of weeds are in the good or fair to good retention rating, and that’s promising. Green foxtail gets a good retention rating while buckwheat gets a fair to good. Volunteer canola is rated good. The unfortunate ones are the poors: wild oat, spiny annual sow thistle, narrow-leaved hawk’s-beard. Those have poor retention and are unlikely to be primary targets for harvest weed seed control because a lot of their seeds are already gone by harvest.Looking at some small plot experiments, seed retention of wild oat, cleavers, and volunteer canola was looked at. Volunteer canola retained most of its seed by the end of September, cleavers was intermediate and wild oat retained about 20 per cent of the seed by the end of September.Kochia has good seed retention. Their seeds only mature after harvest, so most of the seed is still there at harvest, but the concern is that below the cutting height, typically six inches, there can still be over 5,000 seeds below that cutting height. So even though a lot of seed is collected by the combine, there could still be a lot missed and left in the field. At this point we aren’t sure what impact harvest weed seed control would have on kochia. As part of my PhD research, we looked at running samples through the Harrington Seed Destructor in a stationary format set up in the shop. We mixed buckets of chaff with weed seeds and ran them through to determine how many are destroyed. We looked at five weed seed species: kochia, green foxtail, cleavers, volunteer canola, and wild oat. We put 10,000 seeds of each of those species into a five-gallon pail of chaff, put it into the Seed Destructor and assessed how many lived when they came out the other side. A second study looked at weed seed size. Weed seed species are all different shapes, sizes and seed coat types. We took canola seeds and we hand sieved them to get thousand kernel weights between 2.2 grams per 1,000 and 5.8 grams per thousand. We also looked at weed seed number by comparing 10 canola seeds up to a million canola seeds in the same volume of chaff. We also looked at chaff volume, so 10,000 canola seeds going through with no chaff or up to eight five-gallon pails of chaff in the same timeframe. And we also looked at chaff type, so barley, canola, and peas. When we looked at weed seed species we did find significant differences in terms of control but our lowest level of control was still over 97 per cent killed. It worked really well on all the species that we tested. In terms of canola seed size, we expected to see an increase in control as the size of the canola seed went up, and we did. But again, we’re within a percentage point of 98.5 per cent control so weed seed size isn’t a big factor in control.Looking at weed seed number, once you have over 100 seeds going through, we were back up at that 98 per cent control. As we increased the amount of chaff going in, initially our control increased, which may be that there’s more deflection within that mill. Those seeds get hit an extra time or two, and then it started to taper off. But again, we are in the 98 to 99 per cent control so it’s not going to have a huge impact in the field. There was a similar story with chaff type. We did have less control in our canola chaff but we were running volunteer canola seeds through the seed destructor so there was likely a background presence of volunteer canola in our canola chaff that we did not account for. But again it’s by one-half per cent and we are still getting 98 to 98.5 per cent control. In summary, what we found with the seed destructor was if you can get the weed seeds into the seed destructor you’re going to kill most of them – greater than 95 per cent. The big question now is how does it work in the field? The answer is we don’t know yet. We have an ongoing study with the seed destructor in 20 producer fields where the seed destructor is in the field at harvest time. We harvest with the seed destructor and compare it to a pass with the seed destructor not milling the chaff. We learned a lot of lessons in 2017.The first is that air velocity is really key. Chaff needs to be moved from the sieves, up and into the input of the tow behind Harrington. In order to get the chaff from the sieves, it has to go up into an input tube, and takes a fair bit of air velocity. If your air velocity is too low, your machine will plug. And if you don’t catch the plug fast enough, you end up with burning belts. Greener, wet material also doesn’t work. We know it takes a lot more effort for the combine to thresh green or wet material. It’s a similar story with the mills. You need higher air velocity, and without it the green, wet material can plug where it forms a nice solid block of really hot, wet chaff in the blower. Green, wet material doesn’t grind well, either. So if you have green material in the field desiccation or swathing is going to be needed to dry the material down. The other complication the tow behind HSD is a big machine that has problems with hills. The integrated seed destructor or the Seed Terminator makes a lot more sense for Western Canada. The research that’s been done in Australia shows that the tow behind unit and the integrated unit are very similar in terms of their control, so it’s still a valid test for those integrated units in Western Canada.An example from a single field in 2017 shows some interesting results, although very preliminary. We compared photos from an untreated and treated Seed Destructor pass. There was substantially less volunteer canola in the treated pass after harvest. There is still some volunteer canola, but there’s substantially less.We hope to start seeing benefits in the spring of 2018, but it is a three-year study. We’ll be back on the same locations for the next two harvests so that we can take into account the seed bank buffering that we’ll see in terms of our treatments. These are new strategies. There’s always going to be bugs to work out, but they can be very effective in helping us manage the herbicide resistance that we’re currently facing.For more stories on this topic, check out Top Crop Manager's Focus On: Herbicide Resistance, the first in our digital edition series.
Implementing a winter canola-soybean double crop can be a potential way to overcome challenges in soybean and canola production in Ontario, according to OMAFRA's latest CropTalk newsletter.Eric Page, research scientist in weed ecology, and Sydney Meloche, weed science technician, at AAFC Harrow Research and Development Center have conducted planting trials looking into the feasibility of this idea. Although they have yet to work out all of the agronomic issues involved with implementing a winter canola-soybean double crop, the early results are promising.Soybean and canola production in Ontario is challenging due to a number of factors. Soybean production in Southwestern Ontario has to overcome the prescence of multiple glyphosate resistant weed species. Canola production faces challenges like swede midge and clubroot. Winter canola and soybean double crop could allow canola production to escape swede midge pressure while helping to stem soybean yield losses in longer season regions of the province. Page's research will continue to explore questions related to a winter canola-soybean double crop. Farmers who are interested in the research or providing feedback are encouraged to reach out at This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Read here for more information on the details and results of trials.
Early weed control has many benefits as weeds compete with crops for nutrients, water, and light. “Research on weeds germinating before the crop emerges as compared to crop emerging before the weeds shows a very significant drop in yield loss when the crop emerges prior to the weeds,” says Harry Brook, crop specialist with Alberta Agriculture and Forestry. “A pre-seed burn-off with a herbicide or final cultivation should be as close to the seeding activity as possible to prevent weeds getting the jump on the crop.” All crops have a critical weed control period, which is the time when the crop is susceptible to significant yield loss from weed competition. The critical weed control period for canola is around 17 to 38 days after emergence. Peas can be as early as two weeks after emergence. “Other, more competitive crops, like the cereals, have a less defined critical period,” Brook says. “Corn’s critical period depends more on nitrogen availability than anything else. If you can keep the weed pressure down until the critical period is passed, you minimize yield losses from weed competition.” Field scouting is essential to giving an edge battling weeds, notes Brook. “Field scouting tells you what weeds are present and their density. Once a field has been scouted and a weed problem identified, the degree of threat needs to be assessed. An example of an early, non- yield threatening weed is whitlow grass. It’s a very slow growing, small plant that bolts and goes to seed, usually before seeding. It’s not a direct threat to the crop. However, if other weedy plants are also present in sufficient numbers and are a threat to yield, you can choose an appropriate control measure.” Winter annual weeds like stinkweed, narrow-leaved hawk’s-beard, shepherd’s purse, scentless chamomile, and many others can start growing in the fall. They overwinter as a small rosette but are then quickly able to go to seed once spring arrives. “Control of them in the spring requires very early action. You need to know the weeds present to choose the best control method. Crop volunteers from previous years are also an increasingly problematic weed obstacle. Volunteer canola is one of our top weed control issues every year. These and other problem weeds will require additional products when applying a spring burn-off with glyphosate.” To get the best result from any early herbicide application, Brook says the herbicide must be applied when the weeds are actively growing. “Under cool or cold conditions you can expect poor results from the spray as the target weeds are either dormant or growing too slowly. They cannot absorb and translocate enough active ingredient to kill them. Weeds also have to be large enough to absorb enough herbicide to be killed, yet not too large to have already affect crop yield from competition. Low spray volumes and coarse sprays can lead to insufficient herbicide landing on the plants. Best temperatures for application should ideally be above 12 to 15 C, when the plants are actively photosynthesizing. If it was frosty in the morning, waiting until a warm afternoon will improve efficacy.” Another tool in the weed control toolbox is the competitive nature of the crop itself. “Highly competitive crops can reduce the effects of weeds on yield. Once a crop canopy has covered the soil, sunlight no longer can penetrate to the ground and weeds stop germinating,” adds Brook. “Heavier seeding rates can also squeeze out weeds. Hybrid canola and barley are our two most competitive crops. You still have to choose a competitive variety. Semi-dwarf barleys are less competitive than regular barleys. Heavier seeding rates always increase the crop’s competitive nature against weeds. Thin crops allow light to hit the ground, stimulating more weed growth.” For more information, contact the Alberta Ag-Info Centre at 310-FARM (3276).
In 2016, a survey conducted by the University of Guelph’s Ridgetown Campus found that producers believe lamb’s-quarters to be their “worst weed” overall across Ontario.
Herbicides have become very important for weed control. However, frequent and repeated use of the same herbicide groups has gradually resulted in development of herbicide-resistant weeds to the point that resistance has become a very serious problem for many Prairie farmers. When herbicide resistance is a relatively minor problem, growers tend to pay less attention to managing it than they should. Once resistance starts affecting a major weed or a major herbicide used on the farm, then growers pay more attention to the herbicide group number on the label.
In Western Canada, wild oat continues to be one of the most problematic weeds. As part of an integrated weed management strategy, researchers continue to look for additional options and different lifecycle timings to reduce populations, frequencies and herbicide resistant populations.
What if monitoring temperature controls was automated, and a grain bin itself could warn suppliers of low levels?That's the theory behind an emerging category of technology called "the Internet of things (IOT)," and it's leading to better business outcomes for farms and food business across Canada.Kyle Arbuckle, of Kitchener, Ontario-based blueRover, says agriculture and food is one key area of focus for the company, which serves clients across North America. | READ MORE
Some fungi such as Fusarium and Penicillium can infect the grain of corn, wheat and other cereals and may produce toxins under certain conditions. Preventing or minimizing the accumulation of these toxins is very important for ensuring food and feed safety and for maintaining the grain’s value in the marketplace. A recent study shows that ultraviolet (UV) light might offer another way to decrease fungi and fungal toxins in harvested cereals.
About a decade ago, Kyle Folk was at his parents’ grain farm helping his dad load up a semi of canola to meet a contract when the two made an unpleasant discovery.
One of the first research questions was to determine what we expected aeration to do and what the main objectives were,” says Ron Palmer, IHARF research engineer. “The first reason was to remove some of the moisture from the grain, especially if it is tough.
With industry meetings and conferences in full swing across the country, many producers have taken the winter months to seek out information and networking opportunities. As I recently navigated my way through a number of sessions at the SouthWest Agricultural Conference (held in early January at the University of Guelph Ridgetown campus), the turnout painted an obvious picture.
Farmers keep a close eye on the yield monitor as their combines roll across the field. GSI (Grain Systems, Inc.) recommends that growers also monitor their grain storage system during harvest and rate its performance once the season’s over.“Evaluating how well their grain system handled the harvest season, and what improvements may be needed, is one of the most important steps farmers can take to help prepare for next year,” says Gary Woodruff, GSI conditioning applications manager.Woodruff suggests farmers keep track of any grain handling, drying or storage issues, and then give their grain system a post-harvest “report card” based on the following considerations: Material handling – How well did grain handing equipment – dump pits, grain legs and other conveyors – perform in loading and unloading of grain? If bottlenecks were experienced, consider adding faster, higher-capacity handling equipment for next season. Dryer capacity – Ideally, grain should be dried the same day it is harvested. If wet grain remained in a hopper tank longer than one day, plan to add drying capacity next season to protect grain quality. Grain storage capacity – Did grain bins have adequate storage for the bushels harvested? If not, and it was necessary to transport more grain than expected to an elevator, expanded storage may be a wise investment for 2018. Hauling grain to an elevator not only entails storage costs, but may also can take time away from harvest for transportation. Safety – Post-harvest is also a good time to consider possible system enhancements, such as improving safety. This can include installing roof stairs or peak platforms on bins, checking to see if bin safety cages are secure, and making sure all safety shields on motor drives and dump points are in good condition. Maintenance – Grain bins and dryers should be thoroughly cleaned of debris as soon as they are empty and the entire storage system inspected, so that all equipment will be ready for next season. Common maintenance needs can include repairing and/or replacing worn motors and belts, damaged down spouts, noisy gear boxes, worn flights on augers and oil leaks. “The off-season is a much better time to address these issues, rather than waiting until the busy spring or summer periods, when dealers are booked and required parts may be difficult to find in time for harvest,” Woodruff notes. “Farmers know the importance of inspecting and cleaning their combine following the harvest season,” says Woodruff. “It’s just as important to evaluate their grain system to be sure it will efficiently meet their storage needs for next season.”For more information, farmers can contact their GSI dealer or visit www.grainsystems.com.
A crop related research project will look at how to better manage the production of oats in Saskatchewan.Northeast Agriculture Research Foundation (NARF), located at Melfort, received $80,255 in funding from the province’s Agriculture Development Fund (ADF) for the three-year study that will start this spring. Western Saskatchewan Oat Development Commission and Saskatchewan Oat Development Commission are also dedicating a combined $110,255 to the project.Research manager Jessica Pratchler said specifically she will look at not just relying on fungicides for disease control in oats. For the full story, click here. 
The grain industry is adopting innovation from motor racing specialists when it comes to new technology and materials designed to reduce the risk of fires in headers. READ MORE
Harvest timing can have a huge impact on soybean shatter losses, according to North Dakota State University Extension Service agricultural engineer Ken Hellevang.Because harvest losses increase dramatically when the moisture content is below 11 per cent, harvesting during high humidity such as early morning or late evening or damp conditions may reduce shatter loss, Hellevang notes.Many times, the discount for delivering beans with a moisture content in excess of 13 per cent may be less than the discount for shatter losses from harvesting overly dry soybeans. For the full story, click here. Related: PAMI uncovers keys to higher returns on soybeans
Weeks of heavy rain and snow at harvest last fall left western Canadian farmers carrying a devastating 2.5 million acres of field crops unable to be harvested. Though that scenario is an extreme, climate change means anomalous weather may be our new normal. Successful farmers expect the unexpected and know planning in advance for adverse conditions can make a huge difference in ultimate crop returns. With excessively wet weather the reality throughout much of the season for many Ontario producers, at least some growers are already asking how they might minimize moisture-induced harvest losses if the wet weather continues.
Ontario producers planted 2.2 million acres of corn this spring, up by more than 200,000 acres over each of the past three years. The huge acreage places corn second only to soybeans in total planted area and often first in total farm value in Ontario. Though these statistics prove corn is key to Ontario’s agriculture sector, producers are not yet capturing the crop’s per acre potential. Every corn grower should brush up on their pre-harvest and harvest-time best management practices in order to get the most from their crop.
This year, it is easier and faster for producers to get their Harvest Sample Program results. As soon as a sample is analyzed, producers will automatically get an email with their free unofficial grade and quality results as long as they provided a current email address. In addition, producers can also call 1-888-324-2248, email This e-mail address is being protected from spambots. You need JavaScript enabled to view it  or get their results online at www.grainscanada.gc.ca.To take part in the program, producers use postage-paid grain envelopes from their Harvest Sample kits to send the Canadian Grain Commission samples of grain from their harvest. The Canadian Grain Commission uses these samples to generate annual harvest quality reports.Producers have until December 31 to submit their samples.
Pre-harvest sprouting – germination of the grain while it is still in the head – can cause costly losses in Prairie cereal crops, so research is underway to develop tools and knowledge for more efficient breeding of elite wheat and barley varieties that better resist or tolerate pre-harvest sprouting.
Better winter field survival is a central goal of Prairie winter wheat breeders. However, over the last few decades, making gains in this trait has been very challenging. So a team of researchers is deciphering the genomics of winter survival to further advance the development of varieties that survive and produce good yields no matter what the winter weather is like.
In Canada, the Global Institute for Food Security (GIFS) at the University of Saskatchewan conducts research into transformative innovations in agriculture in both the developed and the developing world.
While putting his issue together, I was reminded just  how intricate (and complicated) disease is. Let’s look at Fusarium head blight (FHB) and its many forms as an example.
Wanted: farmer plant breeders. In a pilot project initiated by Martin Entz with the University of Manitoba’s plant science department, and Stephen Fox of Agriculture and Agri-Food Canada (AAFC), organic wheat farmers participated in the selection of organic wheat lines to see how farmer-selected wheat populations compared with conventionally developed registered varieties.  
A three-year research project with the goal of streamlining dry bean breeding projects shows promising developments that could lead to significant increases in yield for dry bean crops.
Monsanto Company and Corteva Agriscience agreed to expand the license for Roundup Ready 2 Xtend technology for soybeans.
Unregulated genetically modified (GM) and herbicide-resistant wheat has been found growing near an isolated access road in southern Alberta, according to a statement by the Canadian Food Inspection Agency (CFIA).
Kansas State University researchers have discovered how weeds develop resistance to the popular herbicide glyphosate, a finding that could have broad future implications in agriculture and many other industries.Their work is detailed in an article that appears in the March 12 edition of the Proceedings of the National Academy of Sciences (PNAS).“Herbicide resistance in weeds has been a huge problem, not only in Kansas and the U.S. but many parts of the world,” said Mithila Jugulam, a K-State weed scientist and co-author of the PNAS article.“What we found that was new was how these weeds have evolved resistance to glyphosate in such a short time. If you look at the evolution of glyphosate resistance in Palmer amaranth, based on our research, it appears to have occurred very rapidly.”Palmer amaranth and common waterhemp are the two troublesome pigweeds in Kansas agricultural fields, as well as other parts of the United States. Glyphosate – the key ingredient in the popular Roundup brand – is the herbicide that is widely used for controlling many weeds. But Jugulam notes that glyphosate resistance is becoming more prevalent in many states.“We found that glyphosate-resistant Palmer amaranth plants carry the glyphosate target gene in hundreds of copies,” Jugulam said. “Therefore, even if you applied an amount much higher than the recommended dose of glyphosate, the plants would not be killed.”Bikram Gill, director of Kansas State University’s Wheat Genetics Resource Center who has worked in plant genetics for nearly 50 years, said the researchers knew pretty quickly that the genetic makeup of resistant weeds was different.“Normally, the genetic material in all organisms – including humans – is found in long, linear DNA molecules, called chromosomes,” said Gill, another co-author of the study. “But when (K-State researchers) Dal-Hoe Koo and Bernd Friebe, the chromosome experts on the team, looked at these glyphosate-resistant weeds, the glyphosate target gene, along with other genes actually escaped from the chromosomes and formed a separate, self-replicating circular DNA structure.”Scientists refer to this structure as extra-chromosomal circular DNA (eccDNA). Each eccDNA has one copy of the gene that produces an enzyme that is the target for glyphosate.“Because of the presence of hundreds of eccDNAs in each cell, the amount of the enzyme is also abundant,” Gill said. “Therefore, the plant is not affected by glyphosate application and the weed is resistant to the herbicide.”Gill said the indications are that once a weed has acquired eccDNA, the resistance may evolve as quickly as in one generation.“We think that the resistance via eccDNA is transitory: It can be passed to the weed’s offspring and other related weed species,” he said. “We have somehow caught it in between becoming permanently resistant. Eventually, we think that these eccDNAs can be incorporated into the linear chromosome. If that happens, then they will become resistant forever.”The same K-State group recently published research on common waterhemp in the scientific journal, Plant Physiology, reporting that “a portion of the linear chromosome containing the target gene broke to form a ring chromosome carrying several copies of the glyphosate target gene,” according to Jugulam.Armed with their new knowledge, the researchers can begin work on developing strategies to negate resistance in weeds.
New research has identified genes that control vitamin E content in maize grain, a finding that could lead to improving the nutritional profile of this staple crop.Cornell University scientists and colleagues from other institutions combined different types of genetic association analyses to identify 14 genes across the genome that were involved in the synthesis of vitamin E. Six genes were newly discovered to encode proteins that contribute to a class of antioxidant compounds called tocochromanols, collectively known as vitamin E. Along with antioxidant properties, tocochromanols have been associated with good heart health in humans and proper functioning in plants. READ MORE
Real-time DNA sequencing, anywhere, anytime, is one step closer to making the jump from science fiction to science fact, according to researchers at the Royal Botanic Gardens, Kew. A recent paper published in Scientific Reports outlined how the team used a MinION portable DNA sequencer to analyze plant species in the field.
Australian researchers at the University of Adelaide have identified a naturally occurring wheat gene that, when turned off, eliminates self-pollination but still allows cross-pollination - opening the way for breeding high-yielding hybrid wheats.Published in the journal Nature Communications, and in collaboration with U.S.-based plant genetics company DuPont Pioneer, the researchers say this discovery and the associated breeding technology have the potential to radically change the way wheat is bred in Australia and internationally. To read the full story, click here.
Leaving corn unharvested over winter poses a new set of problems. Photo courtesy of David Hooker.   There are years when it can be extremely difficult for farmers to harvest some of their corn acres. Excessive rainfall during the harvest period may result in fields that are too wet to be combined. In other years, cooler-than-normal weather during the growing season can result in high grain corn moisture levels and prohibitively high drying costs. In this case, farmers may opt to harvest the corn in spring, leaving it to dry down naturally to reduce drying costs. However, leaving the corn unharvested over winter comes with another set of challenges. There is an increased risk of lodging over winter, impacting crop harvestability and grain yield, explains David Hooker from the University of Guelph’s Ridgetown campus. Hooker and his associates set out to identify potential management strategies that farmers could use to improve crop yield and quality in spring-harvested corn. There has been limited research into how to manage corn with the explicit intent of overwintering for a spring harvest, Hooker says. One trial in Wisconsin during 2000 and 2001 comparing fall- and spring-harvested corn plots showed yield losses could vary considerably. For example, with heavy snow cover, losses were 38 to 65 per cent, compared to a winter with little snow when yield losses were only seven to 10 per cent. However, newer hybrids with the Bt trait and genetics for improved stalk strength may have the potential to improve standability over the winter, Hooker says. In southern Ontario, the standard management practices for corn production consist of planting at a relatively high plant population (80,000 plants per hectare), applying a foliar fungicide only if there is justifiable disease potential, harvesting in the autumn when grain moisture is approximately 25 per cent or less, and drying grain down to 15.5 per cent using on-farm grain dryers or through commercial elevators. A review of the literature revealed some possible strategies for reducing yield losses associated with overwintering corn. These included selecting a hybrid with superior stalk strength, selecting later maturing hybrids, planting at a reduced population (i.e. 60,000 plants per hectare or 24,000 plants per acre). Another possible management strategy is to apply a foliar fungicide around tasseling time, which has been shown to delay leaf senescence and improve stalk strength, which can contribute to improved standability. Field experiments were initiated to compare the effects of hybrid maturity, plant population, foliar fungicide application and harvest timing on grain yield and standability. Field experiments were initiated in 2009 and 2010 at five separate locations in southern Ontario near Belmont, Ridgetown and Lucan. Of the three locations, Lucan usually receives more snow because it is in the snowbelt region of southwestern Ontario, leeward of Lake Huron. Researchers compared spring versus fall harvest, plant populations (60,000 or 80,000 plants per hectare), with and without an application of Quilt foliar fungicide, and three corn hybrids with differing maturities. The parameters observed were stay-green in the autumn, lodging in spring, and grain yield, moisture and test weight of corn harvested in autumn and spring. The results point to an overwintering management strategy for corn, which consists of planting at a reduced plant population (24,000 plants per acre) and spraying the crop with a foliar fungicide around tasseling. This strategy minimized yield losses across all hybrids by between 3.5 per cent and 13.2 per cent at four out of five field locations through improvements in corn standability, compared to when the crop overwintered using a standard population and no fungicide application. While lower plant populations resulted in better standability, it was usually at the expense of some grain yield, Hooker says. An economic analysis of the yield data in this study would be of value to growers, he adds. Unfortunately, while the overwintering management strategy was an improvement over previous reports of yield losses, lodging was still at unacceptable levels at most locations. High winds, heavy snowfall and other adverse weather conditions can overwhelm any management strategy geared to help mitigate the risks associated with overwintering corn, Hooker says. “At the Lucan location, 100 per cent of the corn was lodged in the spring.” The study did not look at the effect of overwintering corn on grain vomitoxin levels. Hooker would like to see this addressed in future research. “Overwintering corn should be considered on a year- and field-specific basis,” he concludes. For example, overwintering may be considered if grain moisture is extremely high (greater than 34 per cent) in November, if drying costs are high, the corn is of inferior quality (the grade of corn can improve with a spring harvest) and if root and stalk strength are excellent. “The practice of harvesting corn in the spring carries significant risk, mainly due to root and stalk lodging and reduced harvestability,” Hooker says. In areas where the winters are typically harsh, overwintering corn is a risky practice regardless of the management strategy deployed, he cautions.   
Feb. 3, 2016 - Monsanto is commercializing its dicamba-tolerant Roundup Ready 2 Xtend soybeans in Canada in time for the 2016 growing season, after the company received import approval from China's Ministry of Agriculture. Roundup Ready 2 Xtend soybeans are the industry's first biotech-stacked trait in soybeans to combine the yield potential of the Genuity Roundup Ready 2 Yield soybean trait, along with tolerance to both glyphosate and dicamba. According to Monsanto, field trial results and large scale farmer demonstration trials have shown that the Roundup Ready 2 Xtend Crop System is an effective and sustainable weed management tool for tough-to-control and glyphosate-resistant weeds. To complement the Roundup Ready 2 Xtend soybean trait launch in Canada, Monsanto is also launching XtendiMax herbicide with VaporGrip Technology, a low-volatility liquid dicamba formulation developed for use in the Roundup Ready Xtend Crop System. In the United States, the use of dicamba herbicide over the top of Roundup Ready 2 Xtend soybeans remains in late stage of Environmental Protection Agency (EPA) review and is not currently approved by the EPA. "Managing glyphosate-resistant weeds in soybeans is a growing challenge for many Canadian farmers, particularly in Eastern Canada and they have been looking forward to this important new tool," said Dan Wright, trait launch lead with Monsanto Canada. "The ability to use dicamba, in addition to glyphosate, provides multiple modes of action on every acre and is important to promote long-term sustainability on the farm." In Canada, Roundup Ready 2 Xtend soybeans are expected to be available in more than 30 varieties, covering the key soybean growing regions of Southwest Ontario; Eastern Ontario and Quebec; and Western Canada. Growers who have not yet placed pre-orders for Roundup Ready 2 Xtend soybean seed may still have that opportunity pending available supply and should check with their local seed retailer. For more information, farmers can contact their seed dealer or visit www.genuitytraits.ca.    
Jan. 28, 2016 - Canadian growers now have a new, improved version of herbicide, SOLO WG that has been used to help control tough grassy and broadleaf weeds in Clearfield crops. BASF Canada has received registration from the Pest Management Regulatory Agency for SOLO ADV herbicide for use on Clearfield lentils, Clearfield canola, Clearfield sunflowers and soybeans for the 2016 season. Post-emergence broadleaf and grass herbicide SOLO ADV offers maximum re-cropping flexibility and easy handling because of its unique liquid formulation with the adjuvant built in. SOLO ADV controls weeds growing at the time of application and offers exceptional follow-crop safety. In addition, SOLO ADV offers broad-spectrum weed control for Clearfield lentils and Clearfield sunflowers. The new SOLO ADV liquid formulation will replace the current SOLO WG dry formulation and will be available for sale in the 2016 season. READ MORE.  
Glyphosate-resistant weeds are not a new problem in Canada, but producers must be proactive to keep these weeds from getting out of control. There are now five glyphosate-resistant weeds found in Canada: giant ragweed, common ragweed, water-hemp, Canada fleabane and kochia (which is currently the only glyphosate-resistant weed not found in Ontario). Giant ragweed, the first glyphosate-resistant weed found in Canada, is an aggressive weed that can cause substantial yield losses in field crops if left unchecked. Although it’s not a new problem – giant ragweed was first discovered in Canada in 2008 in Essex County, at the tip of southwestern Ontario – it’s a growing issue, according to Peter Sikkema, a researcher at the University of Guelph’s Ridgetown Campus. He notes glyphosate-resistant giant ragweed has so far been confined to the six most southerly counties of the province. However, the weed is becoming increasingly prevalent in corn and soybean fields, and growers need to be vigilant in order to protect their fields. Sikkema warns that if no action is taken to control giant ragweed (Ambrosia trifida L.), the potential yield loss is very high. His research has shown yield losses in corn from giant ragweed ranged from 63 to 82 per cent, with an average of 72 per cent. In soybean, the yield losses ranged from 19 to 96 per cent, with an average of 73 per cent. In the past, giant ragweed was mainly found along roadsides and creeks, but a shift to no-till soybean production has allowed giant ragweed to gain a foothold in southwestern Ontario, according to Sikkema. The annual weed reproduces by seed and grows up to four metres in height. According to the Ontario Ministry of Agriculture Publication 505: Weeds, “It is distinguished by its very tall stature, its large, lobed but not divided leaves, its long, slender spikes of pollen-producing flower heads and its large, angular seeds with spines around the upper shoulder.” For allergy sufferers, its pollen is a common allergen from August to September in southwestern Ontario. When it comes to controlling glyphosate-resistant giant ragweed in corn, soybean and winter wheat fields, Sikkema says farmers have options. The first line of defense is to use good crop husbandry practices that keep weed populations in check. Using a diverse crop rotation of three or more crops and using herbicides with multiple modes of action is fundamental, Sikkema advises. Other good practices include seeding a cover crop after winter wheat harvest and using practices that give the crop a competitive advantage, such as seeding at higher populations, using narrower row spacing, and controlling insects and diseases, he adds. Aggressive tillage in spring might be able to control giant ragweed, but Sikkema has doubts about this method of control, particularly the negative effects of aggressive tillage on soil structure and soil health. “I’m not sure that’s a practice that’s sustainable long-term,” he says. When it comes to control of glyphosate-resistant giant ragweed with alternate herbicides, the options vary by crop. “We have good solutions in corn,” Sikkema says. “Marksman, Banvel and Distinct can be used post-emergence in corn.” In winter wheat crops, 2,4-D, along with Target, Estaprop, Lontrel and Trophy give good control. In soybean crops, he has found Roundup plus 2,4-D tank-mixed applied pre-plant, seven days before seeding soybean, is very effective. “It’s important to have that seven-day interval to prevent injury to the soybean.” With soybean, Sikkema notes it’s important to control glyphosate-resistant giant ragweed before the soybean comes up. There are no herbicides applied post-emergent that provide acceptable control of glyphosate-resistant giant ragweed in soybean, he says. Giant ragweed seedlings initially emerge in early spring. They can be identified by their spatulate (spoon-shaped) cotyledons, which unfold from a hairless hypocotyl and an indentation at the base of the cotyledons. The first true leaves are entire and ovate with deep lobes. Farmers are doing a good job of managing glyphosate-resistant giant ragweed, Sikkema says. However, he cautions that some giant ragweed biotypes have multiple resistances to both glyphosate and Group 2 herbicides. In the future, Sikkema says the Roundup Ready Xtend soybean, which are resistant to both Roundup and dicamba, will give farmers another tool for managing glyphosate-resistant weeds.        
Nov. 27, 2015 - The Canadian Weed Science Society / Société canadienne de malherbologie (CWSS-SCM) honored several individuals for their extraordinary contributions to the field of weed science. The awards were presented during the organization's 69th annual meeting, held Nov 22-26, 2015 in Edmonton, Alta. Excellence in Weed Science Award (sponsored by Dow AgroSciences): CWSS-SCM honored Stephen Darbyshire, a research scientist with Agriculture and Agri-Food Canada in Ottawa, Ont. Stephen's research focuses on developing new information on the taxonomy, phylogeny, and distribution of weeds and invasive plants. He has collected approximately 10,000 specimens of plant, bryophyte, and fungal specimens, primarily from Canada. Darbyshire has served on the board of directors for CWSS-SCM and has held numerous leadership positions within the society, including publications director. He has published more than 95 peer-reviewed manuscripts, 50 monographs or book chapters, supervised and co-supervised several graduate students, and presented over 30 papers at scientific conferences. Excellence in Weed Extension Award (sponsored by Valent): CWSS-SCM honored Danielle Bernier, a weed scientist and extension specialist with the Ministry of Agriculture in the Province of Quebec. Bernier has developed great expertise locally, and is well known across the country for her tireless efforts in extending weed science to growers and industry personnel. Bernier has made dozens of presentations each year to producers and at scientific meetings, has produced over 65 extension bulletins for the province of Quebec, as well as serving in various capacities within the CWSS-SCM. Outstanding Industry Member Award (sponsored by CWSS-SCM): CWSS-SCM honored Mark Lawton, technology development lead with Monsanto, based in Guelph, Ont. Lawton is responsible for the team that provides technical support for current products and the development of new products within Monsanto. In addition to serving in this technical capacity, he has published 18 peer-reviewed manuscripts, given over 25 papers at scientific conferences, and has served on the committee of numerous graduate students at the University of Guelph. Meritorious Service Award (sponsored by CWSS-SCM): CWSS-SCM honoured Ken Sapsford, an independent consultant from Kaleden, BC. Sapsford was formerly a research assistant at the University of Saskatchewan. Sapsford has been very active within the CWSS-SCM, serving on three local arrangements committees, and as a member of the board of directors for six years. Beyond his dedication to the society, he has been very active in extension to agronomists and growers throughout his career. Sapsford's research contributions include authoring or co-authoring five peer-reviewed manuscripts, 66 conference and workshop proceedings, 20 technical reports to industry, 106 extensions presentations, and over 65 media interviews. Student Scholarships and Travel Awards 1st Place Award for a Ph.D. student (sponsored by Monsanto) was presented to Breanne Tidemann, from the University of Alberta. Tidemann's research focuses on the potential impact of collecting weed seeds at crop harvest on the contribution to subsequent populations. She is supervised by Drs. Linda Hall (University of Alberta) and K. Neil Harker (AAFC Lacombe, Alta.). 2nd Place Award for a Ph.D. student (sponsored by Syngenta) was presented to Charles Geddes from the University of Manitoba. Research by Geddes covers optimization methods to reduce populations of volunteer canola in subsequent soybean crops. He is supervised by Dr. Rob Gulden. 3rd Place Award for a Ph.D. student (sponsored by CWSS-SCM) was presented to Holly Byker from the University of Guelph. The work of Byker focuses on the biology and management of glyphosate-resistant common ragweed. Drs. Peter Sikkema and Darren Robinson are her supervisors. 1st Place Award for a M.Sc. student (sponsored by Monsanto) was presented to Katherine Stanley from the University of Saskatchewan. Stanley's work focuses on the potential of mechanical weed control in organic pulse crop production. She is supervised by Dr. Steve Shirtliffe. 2nd Place Award for a M.Sc. student (sponsored by Dow AgroSciences) was presented to Christopher Budd from the University of Guelph. Budd's work focuses on the control of glyphosate-resistant Canada fleabane in soybean. He is supervised by Dr. Peter Sikkema. 3rd Place Award for a M.Sc. student (sponsored by CWSS-SCM) was presented to Amy Mangin from the University of Alberta. The work of Mangin focuses on optimizing the efficacy of pyroxasulfone on wild oat. Dr. Linda Hall is her supervisor.  
New canola hybrids are being introduced in commercial quantities for the 2016 growing season. Photo by Janet Kanters. Top Crop Manager has assembled a list of new canola hybrids that are being introduced in commercial quantities for the 2016 growing season. The respective seed companies provide the information, and growers are encouraged to look at third party trials, such as the Canola Council of Canada’s Canola Performance Trials, for further performance and agronomic information. Talk to local seed suppliers to see how new varieties also performed in local trials. Bayer CropScienceInVigor L241C is the newest LibertyLink, clubroot-resistant hybrid with outstanding yield potential, strong standability and a mid maturity suited for all clubroot affected regions of Western Canada. InVigor L241C yielded two per cent higher than InVigor L135C and 102 per cent of the checks (InVigor 5440 and Pioneer 45H29) in 2012-2013 Western Canadian Canola/Rapeseed Recommending Committee (WCC/RRC) co-op trials. InVigor L157H is the newest LibertyLink, specialty oil hybrid in the InVigor Health hybrid offering. It matures a day earlier than InVigor L156H and offers growers higher yield potential plus the security of a contract premium. InVigor L157H yielded 97 per cent of the checks (InVigor 5440 and Pioneer 45H29) in 2013-2014 WCC/RRC co-op trials. BrettYoung6074 RR is the first of the next wave of high-yielding canola hybrids from BrettYoung. 6074RR was the highest yielding Genuity Roundup Ready hybrid in the 2014 Canola Performance trials (109 per cent of check overall). 6074 RR performed well in all zones but is best suited to the mid- and long-season canola zones. It matures 1.4 days later than the checks, is resistant to blackleg and has an excellent rating for harvestability. 6080 RR is BrettYoung’s newest Genuity Round Ready hybrid. In 2014 trials it was very similar to 6074 RR in yield (108 per cent of checks in co-op trials), harvestability and about one day earlier in maturity. 6080 RR is resistant to blackleg, matures 0.86 days later than the checks and is adapted to all canola production zones. 6076 CR is a new high yielding hybrid, resistant to clubroot (pathotypes 2, 3, 5, 6, 8) and has intermediate resistance to the 5X pathotype. Yields in 2014 were equal to the checks. It is a large plant with excellent harvestability. It is also resistant to blackleg, and matures 2.4 days later than the checks. Canterra SeedsCS2100 is a high yielding GENRR hybrid with multigenic blackleg resistance for the long season zone. CS2100 is off to a strong start, yielding 115.5 per cent of 74-44 BL at Etzikom, Alta. in its first trial in 2015. This full-season hybrid possesses multigenic resistance to blackleg that provides more durable defense making it less prone to breakdown by new races of the disease. CS2100 has also been observed to have a higher degree of pod shatter tolerance compared to checks, potentially making it a good straight cut option. CS2100 is available at Canterra Seeds shareholders businesses, independent crop input dealers and through UFA. CS2200 CL is a new high-yielding Clearfield hybrid with full season maturity, great standability and a solid resistant rating to blackleg. As a Clearfield, it could qualify for non-GMO crush programs. CS2200 CL is available at Canterra Seeds shareholders businesses, independent crop input dealers and through UFA. CargillVictory V12-3 Hybrid: High yields with clubroot resistance, Victory V12-3 is a Roundup Ready hybrid with a yield potential of 103 per cent of 45H29. Along with clubroot resistance, it has an industry-leading, multigenic blackleg resistance package delivering a resistant rating for blackleg and is also resistant for Fusarium wilt. V12-3 has very good early season vigour and great yield potential with excellent standability. V12-3 is part of the Cargill Specialty Canola Program delivering higher returns for growers. Dow AgroSciencesNexera 1020 RR: New generation of Nexera canola Roundup Ready hybrid offering improved disease resistance. 1020 RR is the first Nexera hybrid to offer clubroot resistance with a very strong resistant rating in recent public co-op trials. Maturity is one day earlier than 1012 RR and the hybrid has demonstrated strong yield in performance trials. This hybrid is suitable to the mid- and long-season growing zones in Western Canada. Nexera 1022 RR: New generation of Nexera canola Roundup Ready hybrid offering improved disease resistance. 1022 RR offers improved, multigene blackleg resistance with a very strong resistant rating in recent public co-op trials. 1022 RR matures one day earlier than 1012 RR and has demonstrated strong yield performance in trials. This hybrid fits well in the mid- and long-season growing zones in Western Canada. Nexera 2022 CL: New generation of Nexera canola CL hybrid offering improved disease resistance. 2022 CL offers improved, multigene blackleg resistance with a very strong resistant rating in recent public co-op trials. 2022 CL has similar maturity to 2012 CL and has demonstrated very strong yield in performance trials. This hybrid fits well in the mid- and long-season growing zones in Western Canada. DuPont Pioneer46M34 is the first Genuity Roundup Ready canola hybrid that contains the built-in Pioneer Protector HarvestMax trait with a yield potential of 103 per cent of Pioneer hybrid 45H29 in large-scale straight cutting trials across Western Canada in 2014. It has moderately resistant rating for Blackleg and a resistant rating for Fusarium wilt. Pioneer Protector HarvestMax 46M34 reduces the risk of harvest losses from pod shatter and pod drop. Available at all local Pioneer Hi-bred sales representatives across Western Canada. DuPont Pioneer is also launching the first Genuity Roundup Ready hybrid that contains both built-in Pioneer Protector clubroot resistance and sclerotinia resistance traits. The name has not yet been determined. It has a yield potential of 100 per cent of Pioneer hybrid 45H29 in DuPont Pioneer research trials across Western Canada in 2014 along with a resistant rating for blackleg and Fusarium wilt. This new canola hybrid with the Pioneer Protector Plus traits has excellent early growth, improved standability and high yield potential. Available at all local Pioneer Hi-bred sales representatives across Western Canada. DEKALB75-65 RR is a Genuity Roundup Ready hybrid that has a strong agronomic foundation and improved pod integrity that offers the option for straight cutting. It has a dark seed coat and is taller and slightly later maturing than 74-44 BL. Standability is comparable to 74-44 BL and it is rated resistant to both blackleg and Fusarium wilt. Yield potential is strong at 99 per cent of L252 and 103 per cent of 45S54 in Monsanto’s 2014 field scale trials (does not include straight cut trials). 75-65 RR fits broadly across Western Canada and should be a consideration for anyone interested in straight cutting. 75-45 RR is a Genuity Roundup Ready hybrid that offers a unique combination of early maturity and high yield potential. It is earlier than 74-44 BL with similar height and standability, and has a resistant rating to both blackleg and Fusarium wilt. Yield potential is very good at 100 per cent of L130 and 107 per cent of 45S54 in Monsanto’s 2014 breeding trials. 75-45 RR fits particularly well in the short season zones of Alberta and Saskatchewan, and more broadly as an early maturing complement to other products such as 75-65 RR and 74-44 BL to help spread out swathing and harvest operations. 75-57 CR is a Genuity Roundup Ready hybrid that offers clubroot protection as part of a well-rounded agronomic package. It is resistant to a broad range of clubroot pathotypes and has a resistant rating to both blackleg and Fusarium wilt. It is later maturing than 74-44 BL with similar height, good standability, and strong yield potential at 102 per cent of 74-54 RR in Monsanto’s 2014 breeding trials. 75-57 CR provides an excellent solution for growers concerned about clubroot, particularly in central Alberta. Proven SeedsPV 200 CL is the newest high-yielding Clearfield hybrid from Proven Seed and has the added benefit of a world-class standability rating. PV 200 CL offers strong resistance to blackleg and Fusarium wilt while bringing in high yields and profits for canola growers. Available exclusively at Crop Production Services. PV 533 G is a new, high-yielding mid-season Genuity Roundup Ready canola hybrid from the Proven Seed signature lineup, with a yield potential of 104 per cent of DEKALB 74-44 BL. PV 533 G provides growers excellent standability plus a blackleg resistance package that is exhibiting high resistance, even by resistant rating standards. Available exclusively at Crop Production Services. SyngentaSY4105 is the first Genuity, Roundup Ready canola hybrid from Syngenta to incorporate clubroot resistance, making it an exceptional seed choice in areas where clubroot is a major concern. SY4105 fits well across mid-season growing zones in Western Canada, and delivers excellent early-season vigour with strong yield performance. SY4105 is currently available for 2016 seeding and can be purchased through a Syngenta seed dealer. SY4166 is the latest Genuity Roundup Ready canola hybrid from Syngenta. This hybrid is best suited for the mid-to-long season growing zones in Western Canada and includes an excellent agronomic package with multigenic blackleg resistance, good early season vigour and high-end yield potential. SY4166 also boasts excellent standability, which will deliver time savings at swathing and harvest. In a series of 2014 small plot trials, SY4166 reached full maturity, on average, 1.5 days later than SY4135, and 1 to 1.5 days earlier than SY4157. SY4166 will be available for sale starting in fall 2015 for 2016 seeding, and can be purchased through a Syngenta seed dealer. Company NewsIn summer 2015, Cargill opened its new state-of-the-art canola processing facility in Camrose, Alta., which has the capacity to process over one million metric tonnes of canola per year, bringing the company’s total crush capacity to 2.5 million metric tonnes. Cargill said 100 jobs were created during the construction phase of the refinery, and 30 new permanent positions were created to operate the plant. Shortly after, Cargill opened its first canola refinery in Clavet, Sask. The new facility has the capacity to refine one billion pounds of canola oil annually, making it the largest Cargill refinery in North America. On Aug. 6, 2015, Cargill Specialty Seeds and Oils in Fort Collins, Colo. held a ribbon cutting ceremony showcasing their newly completed seed innovation facility while celebrating the 150th anniversary of Cargill.  
The wheat harvest survey shows good quality and progress for all classes of wheat across Ontario.
New data and analysis from a survey of barley samples from across Alberta has the potential to help producers get more feed value from barley.
Preliminary findings indicate Prairie winter wheat seems to have survived periods of extreme cold and low snowfall, according to Farm Credit Canada. “Across the Prairies, the recovery has been anywhere from excellent to fair,” says Janine Paly, an agronomist withn the Western Winter Wheat Initiative. | READ MORE
The Canadian Grain Commission has determined that five varieties of Canada Western Red Spring wheat will be reassigned to the Canada Northern Hard Red wheat class. Scientific trials showed that gluten strength in these varieties was too low to meet the expectations of customers of Canadian wheat, and was reducing the overall quality of the Canada Western Red Spring wheat class.
Winter wheat can often be found to survive short freeze thaw events throughout the winter. However with the recent dips in temperatures with little to no snow cover, there are some concerns about crop damage and survivability. There is also some concern that more cycles of day-night freeze-thaw cycles in 2018 may be causing more frost heaving and unthrifty or dead plants once growth resumes. Joanna Follings and Dave Hooker provide tips for assessing your winter wheat crop on FieldCropNews.com | READ MORE
Despite recent weather, spring is almost here. Now is the best time to assess how successfully winter wheat has survived. To test for winter survival in early spring, remove a few plants from the field on a warm day. Choose plants at random from various areas of the field. Place the crowns in a moist, warm environment where they get exposed to light for at least part of the day. Don’t let the crowns dry out. Severely damaged crowns will turn brown while healthy tissue remains white. At room temperature, healthy crowns should produce new, white roots and green leaves in a few days. Don’t be too hasty to write off a crop that looks thin; some plants take longer to start growing in the spring. A thin, even stand may still out-produce a reseeded crop. The true sign of winter survivability is new root grown from the crown. For more information about assessing this year’s crop, contact the Alberta Ag-Info Centre at 310-FARM (3276).
Genetics, agronomics and better practices are all coming together in the grain corn industry in Western Canada.
Making more money on the same amount of land – it’s a mantra for today’s farmers, and one that’s increasingly relevant as land prices and production costs continue to rise.A Sarnia refining company is helping local farmers expand their return per acre by providing a market for an otherwise low-value material: the corn stalks and wheat stubble left over after harvest.With planning for a new facility well underway, Comet Biorefining is expanding its partnership with Ontario farmers who are members of the Cellulosic Sugar Producers’ Cooperative – a partnership that started in 2014 – to turn an additional 60,000 tonnes of crop residue into 30,000 tonnes of cellulosic dextrose, or industrial processing sugar, each year.The facility will also produce 30,000 tonnes of hemicellulose and lignin or organic compounds found in plant cells that can be used in many industrial applications.“Dextrose is used in everything from food products and animal feed to a wide range of industrial processes. Generating that dextrose from crop residues means farmers are increasing the value they get from every acre,” says Comet CEO Rich Troyer.With support from BioIndustrial Innovation Canada and Sustainable Development Technology Canada, both non-profit organizations that work to promote the development and adoption of clean technologies and markets, construction of the new Sarnia refining facility is to begin this spring.Troyer says the total North American market for dextrose is about six million tonnes every year and growing.“There’s a very significant market opportunity here; we’re actually adding capacity at a much slower rate than market growth,” he says.According to Cellulosic Sugar Producers’ Cooperative general manager Brian Cofell, farmers interested in participating are asked to contribute a membership fee of $500, and an initial investment of $200 for each acre they wish to commit to harvesting crop residues for the new refinery.Yearly returns for that investment begin with a preferred dividend of $50 per acre for the first five years, then continue at $30 per acre each year after that. However, Cofell says they anticipate a return of $100 per acre by 2029, due in part to steady demand for dextrose and the capacity of the new Comet facility.The price farmers will receive for their corn stover and wheat straw is added on top of that dividend, and is locked in at $25 and $40 per dry metric tonne respectively.As of this past December the cooperative was supported by 80 farmer members, though Cofell says that number is steadily increasing.While the new facility is under construction, Coffell says the immediate goal for the cooperative is to continue expanding its member base, while planning for an initial harvest in fall 2018. The new facility will reach full production in 2019.“The cooperative will own 27.5 per cent of Comet Biorefining’s new plant. It’s an opportunity for the growers themselves to be part of creating a final product,” he says.
A look at some of the new corn varieties available to growers for the 2018 planting season. 
The highest recorded corn yield is 532 bushels per acre set by David Hula at Charles City, Virginia in 2015 in an annual contest conducted by the National Corn Growers Association in the United States. By comparison, the highest yield in 2016 in Manitoba Corn Growers Association’s annual yield contest was 274 bushels per acre (bu/ac) set by the Baker Colony at MacGregor, Man. Both impressive yields indeed, given growing conditions at those locations. But how can new corn growers reach those yields?
Researchers have discovered a way to boost the nutritional value of corn—the world’s largest commodity crop—by modifying the plant with a bacterial gene that causes it to produce methionine, a key nutrient.The discovery could benefit millions of people in developing countries, such as in South America and Africa, who depend on corn as a staple. It could also significantly reduce worldwide animal feed costs. READ MORE
With a later than normal planting window and a summer growing season seemingly short on summer weather, some growers have been monitoring their corn growth stages and asking about gauging the risks associated with corn maturity and frost, particularly those who planted very late or have longer maturity hybrids. While there are still several weeks left to the growing season, a few things growers trying to gauge their crop stage for frost risk may want to consider include:Crop Staging Clearly, the closer to maturity (black layer) the crop is, the less impact a frost event will have on the crop. For quick review:The emergence of silks is the R1 stage. As a rough guideline, once pollination occurs, it takes about 60 more days for the crop to reach physiological maturity. Thus, silk timing can give a bit of an indication of when maturity of the corn crop may be expected – a crop that pollinated around July 25th may be expected to reach maturity or black layer sometime around September 25th. While there can be some small differences across hybrid maturities, hybrid maturity ratings have a much more significant impact on the length of time in vegetative stages than reproductive stages.The R2 blister stage occurs following pollination when fertilized kernels are just beginning to develop, while the R3 milk stage occurs when kernels are turning yellow and are beginning to fill with an opaque milky fluid. Grain fill is rapid by the R3 stage, and maturity under normal conditions would be 5-6 weeks away.The R4 dough stage occurs when the milk solution turns pasty as starch continues to form, with some kernels beginning to dent as dough begins to turn to hard starch at the dent ends of kernels. Under normal conditions, the dough stage may be generally 3-5 weeks from maturity.The R5 dent stage occurs when the majority of kernels have dented, and the milk line, which separates the hard starch phase from the soft dough phase, progresses from the dent end towards the cob. The dent stage may last approximately 3 weeks.The R6 maturity or black layer stage marks physiological maturity. This occurs when a small layer of cells at the base of the kernel near where the kernel connects to the cob die and turn black, which marks the end of grain fill from the cob into the developing kernel. Maximum dry matter accumulation has occurred, so any frost or stress event after this stage will have little impact on yield unless harvestability is compromised. Black layer normally forms once milk line has reach the base of the kernel, although significant stress events (extended period of very cool average temperatures, significant defoliation) can result in black layer formation before the milk line has reached the base of the kernel.Frost Severity In regards to frost severity, a light frost (ie. 0°C) may damage or kill leaves, but not be cold enough, or last long enough to actually penetrate into the stem and kill the plant. While premature leaf death limits further grain fill from photosynthesis, a living stem can still translocate dry matter to the developing grain to continue to provide some grain fill after a light frost event.In the event where temperatures are low enough (ie. -2°C), or last long enough to penetrate and kill the entire plant, there is no ability of the plant to continue filling grain, and yield at that point has been fixed.Any frost event during the blister or milk stage would result in significant grain yield losses as significant grain fill is still yet to occur at these stages.A light frost event at the dough stage may reduce yields by 35% while a killing frost may reduce yields by 55% (Lauer, 2004).Yield loss in the dent stage depends on the relative time left to mature. A light frost at the beginning of dent stage may reduce yields by 25% while a killing frost may reduce yields by 40%. During the mid-dent stage, significant dry matter accumulation has occurred, and light and killing frosts may reduce yields around 5% and 10% respectively.Estimating Time to Maturity Time required to reach maturity can be estimated by knowing the approximate Crop Heat Units (CHU) required for each reproductive corn stage. A general approximation of CHU required to complete the various R growth stages in corn is presented in Table 1. Scouting corn for the crop stages described above and referring to Table 1 will give an indication of how many CHU are required for the corn crop to reach maturity. Table 1 Table 1 Table 2 Table 2   View the embedded image gallery online at: https://www.topcropmanager.com/index.php?option=com_k2&Itemid=10&lang=en&layout=latest&view=latest#sigProGalleria279aaa4a46 Comparing the estimated CHU required from Table 2 to an estimated number of CHU available until typical first frost date gives an idea of how much CHU would be available in an “average” year, and how close to maturity the crop may be for the average expected first frost date. Typical first killing frost dates based on 30 year climate normal across a selection of locations in the Province are presented in Table 2, while CHU values can be estimated through calculation tables in the Field Scouting chapter of Pub 811 Agronomy Guide for Field Crops, or through other weather information providers such as Farmzone.com or WeatherCentral.ca. This Report includes data from WIN and Environment Canada
Manitoba Agriculture’s clubroot distribution map shows an increase in clubroot symptoms observed in central Manitoba.
The Canola Council of Canada (CCC) released a new web-based application to help producers with combine adjustments during harvest, maximize yield and edge growers closer to an average yield of 52 bu/ac by 2025.
With high canola prices relative to other commodities, the temptation to run continuous canola is high. But does it really pay in the short term? A research study shows that net returns aren’t necessarily better, and that insect and disease pressures increase over time.
Along with good agronomic practices, weather and growing conditions impact harvest seed yield and quality of annual field crops including canola. Although predicting growing season weather remains a challenge, a team of researchers wanted to know if it might be possible to predict canola quality prior to harvest by looking at growing season weather and environmental conditions during the crop year.
One part BY 6060. Two parts CS 2000. Equal pinches of Nex 1022 and BY 6074. This fancy cocktail of canola hybrids just might perform better than planting only one of the hybrids in a field. Greg Stamp of Stamp Seeds in Enchant, Alta., ran demonstration trials in 2016 and 2017 to see if a blend of hybrids would perform better.  
Green seed in canola is a downgrading factor that causes more than $150 million in losses annually. But researchers at the University of Calgary hope to help reduce those losses with the identification of a gene that helps the de-greening process.
Strip till offers several benefits to soybean growers on heavy residue stubble. A key benefit on sandy loam soils is leaving residue on the soil surface to protect against soil erosion by the wind – an occurrence in recent years after snow melts on tilled soils.
Soybean production is intensifying across Western Canada, and for producers, managing herbicide-resistant volunteer canola populations can be challenging. Volunteer canola is one of the top abundant weed species in Western Canada and can be very competitive in all soybean crops.
Dry conditions across Ontario have amplified moisture stress, nutrient deficiency symptoms, insect feed and disease symptoms in soybeans, according to OMAFRA's latest field crop report. 
Soybean seeding is nearing completion in most areas of Manitoba, with germination and emergence of soybean crops well underway. Dry bean planting is approximately 30 per cent complete, and field pea planting is now wrapped up, according to the Manitoba Pulse and Soybean Growers Bean Report. | READ MORE
Until recently, iron (Fe) deficiencies in field crops in the prairies were mostly unheard of until soybean acreages began to expand. In Saskatchewan, with the growing acreage of soybeans, iron deficiency chlorosis (IDC) began to show up in some soybean fields under certain soil and environmental conditions.
The Pest Management Regulatory Agency (PMRA) in Canada has granted approval for the registration of Lumiderm insecticide seed treatment from Corteva (the agriculture division of DowDuPont) for soybeans for control of bean leaf beetle and soybean aphid. Lumiderm will be commercially available for 2019 spring planting. Lumiderm seed treatment provides soybean seedlings with extended protection against bean leaf beetle and soybean aphid. Protecting vulnerable seedlings from these two damaging insects leads to more uniform and healthier plant stands, allowing the crop to achieve its maximum yield potential at harvest. Lumiderm contains a unique Group 28 insecticide that helps growers manage the threat of resistance, and has a favourable environmental profile, according to a press release.
Canadian farmers are poised to plant 140,000 hectares of chickpeas this season – the biggest crop in 11 years, and more than double what was sowed last year – the agriculture ministry said in a report. At the same time, they're reducing the area planted with other so-called pulses, such as peas and lentils, amid steep import tariffs in India, the biggest buyer. | READ MORE
Soybean seeding is just beginning in eastern and central Manitoba, and seeding of peas and faba beans is well underway throughout the province, according to the latest Bean Report from the Manitoba Pulse and Soybean Growers. 
Projected pulse and soybean acres, wireworm monitoring, curbing disease and field pea fertility recommendations – all these topics and more are found in the latest edition of the Bean Report from the Manitoba Pulse and Soybean Growers. | READ MORE
As the interest in fababean production continues to grow, so does the need for more up-to-date agronomic information. Researchers and the industry in general have several efforts underway – however, much of the current agronomic information available to Saskatchewan producers is either unavailable, outdated, or sourced from other growing regions. Various research projects are focused on developing Saskatchewan-based agronomic information and updating work initially done back in the 1970s.
The fababean crop has been growing in popularity in Western Canada. In Saskatchewan in particular, it is promoted as the pulse to grow in the northern and eastern areas of the province that are not ideal for lentils or chickpeas. However, while export markets are currently limited for Western Canada’s fababeans, a recent study looking at potential markets the crop reveals opportunities closer to home that producers can tap into.
Legume crops are unique in that they can fix much of their own nitrogen (N) requirements from the air to reduce or eliminate the need for N fertilizer. Legume crops include, alfalfa, clover, soybean, dry pea, bean, lentil, fababean and chickpea.
Canada’s ginseng industry receives a boost as Lawrence MacAulay, minister of agriculture and agri-food, announced an investment of $360,521 to the Ontario Ginseng Growers' Association (OGGA) to help promote and pursue new markets.
When you think of a radish, you may think of the small, round, crunchy, red-and-white vegetable that is sliced into salads. You might be surprised to learn that a larger, longer form of this root vegetable is being used in agriculture as a cover crop.Cover crops are grown between main crops such as wheat, corn, or soybeans when the soil would otherwise be bare. Cover crops can control erosion, build soil, and suppress weeds. Radish as a cover crop can provide these benefits and more. The long radish root creates deep channels in the soil that can make it easier for subsequent crops to reach water in the soil below.Radish is also known to benefit water quality. It does so by taking up nitrogen, in the form of nitrates, from the soil. This leaves less nitrogen in the soil that can run off to nearby streams and lakes.Matt Ruark of the University of Wisconsin-Madison and colleagues wanted to know more about the effect of this nitrate uptake in the following growing season. They established test sites in three Wisconsin locations and studied them for three years. At each site, some plots received the radish cover crop and some did not. The radish cover crop was planted in August after a wheat harvest. Corn was planted the following spring.The research showed that radish significantly reduced the nitrate content in the soil as compared to the test plots with no cover crop. This finding confirmed the results of several earlier studies. It showed that radish did take up nitrogen, in the form of nitrates, from the soil.This research supports the use of radish as a cover crop as a trap crop for fall nitrogen. However, what happens to that nitrogen afterward remains unknown.There was no consistent evidence that nitrogen was returned to the soil as the radish crop decomposed. Radish did not supply nitrogen to the corn crop. The researchers concluded that in the Upper Midwest the nitrogen in radish could not replace fertilizer.Ruark commented, “Radish grows well when planted in late summer and traps a lot of nitrogen. But the way it decomposes doesn’t result in a nitrogen fertilizer benefit to the next crop. We don’t know exactly why. We were hoping it would provide a nitrogen benefit, but alas, it did not.”What happens to the nitrogen? The decomposition pattern of radish needs to be explored more fully to learn more. And perhaps, Ruark said, radish could be more beneficial if mixed with a winter-hardy cover crop.  Read more about Ruark’s work in Agronomy Journal.
Pastures and hayland were stressed last year due to dry conditions, grasshoppers, over grazing, and a long winter. Barry Yaremcio, beef and forage specialist with Alberta Agriculture and Forestry looks at how producers can plan this spring to avoid a feed shortage next winter. “It is difficult to estimate how the stands will respond this spring or what the yield potential is for this year,” Yaremcio says. “With many feed yards and silage pits nearly empty or empty, the amount of carryover feed for the winter of 2018-19 is minimal.”
Those humble wild sunflowers you see growing along prairie roadsides are key weapons in the fight against sclerotinia in sunflower crops. Through a long, complex process, researchers are transferring resistance genes from wild species into cultivated sunflower and gradually upping the crop’s ability to fight off this pathogen.
The 2018 Ontario Forage Expo, featuring forage equipment demonstrations and trade show, will be held in July, hosted by the Ontario Forage Council, in conjunction with the Dufferin and Northumberland County Soil and Crop Improvement Associations.
Many fields across Ontario may be at risk of alfalfa winterkill this year. Christine O'Reilly shares how to determine whether your fields were at risk, if damage occurred, and what to consider for next steps on FieldCropNews.com. | READ MORE
In 2013, Lethbridge’s Southern Drip Irrigation Ltd. took farmer Don Plett down to Texas to look at subsurface drip irrigation (SDI) systems in 400,000 acres of cotton.
The goal of irrigation scheduling is to ensure the crop is never under water-induced stress that would limit yield potential. It involves determining the correct amount of irrigation water to apply to a crop at the right times to achieve optimum yield.
Pivot irrigation is by far the most common method of irrigating crops in Western Canada. Over 80 per cent of the 1.7 million acres of Alberta’s irrigated land uses pivot systems. Low pressure pivots with drop tubes and spray nozzles have become the most common form of pivot irrigation due to water application and energy efficiency.
Researchers at the University of Guelph are finding that Ontario crops can benefit from subsurface drip irrigation. The technology (which is relatively new to the province) is a low-pressure, high-efficiency system that uses buried polyethylene drip lines to meet crop water needs by applying water below the soil surface using micro-irrigation emitters.
Conservation management practices can increase sugar beet yields over time – that’s one of the key messages from a 12-year irrigated cropping study that compared conservation and conventional management.
Soybean production is spreading across the Prairies. In 2016, Manitoba had nearly 1.64 million acres seeded to the crop, and Saskatchewan seeded 240,000 acres. In Alberta, production is still relatively low at around 15,000 acres, according to industry estimates. But with early and very early maturing varieties becoming more common and with the expanding soybean crushing capacity in the province, more Alberta growers are considering this crop. Now, two collaborating soybean projects with agronomic, economic and varietal studies are nearing completion. The results will help create a solid foundation for soybean as a profitable crop option on irrigated land in southern Alberta. Manjula Bandara, a special crop research scientist with Alberta Agriculture and Forestry (AAF), is leading one of the projects, and Frank Larney, a research scientist with Agriculture and Agri-Food Canada (AAFC), is leading the other.Photo courtesy of Andrew Olson. Bandara has been working on soybeans since about 2004, when he started conducting variety trials in southern Alberta as part of the Western Soybean Adaptation Trials. Bandara’s group tested Roundup Ready and conventional varieties under both rain-fed and supplementary irrigation conditions. In the first few years of the trials, soybean yields ranged from about 267 to 3,703 kilograms per hectare (kg/ha). Over time, as breeders developed improved early maturing varieties, the yields in these trials rose to around 3,000 to 4,000 kg/ha (45 to 60 bushels per acre, or bu/ac). Most Alberta soybean production is on irrigated land. In Bandara’s trials, some varieties gave reasonable yields under rain-fed conditions, but supplementary irrigation improved their yields. For instance, one variety yielded 3,185 kg/ha under rain-fed conditions and 3,646 kg/ha with supplementary irrigation. Other varieties and lines really responded to irrigation. For example, one line more than doubled its yield, going from 2,038 kg/ha when rain-fed to 4,581 kg/ha under supplementary irrigation. “With these results, we were convinced that we could grow soybean under supplementary irrigation conditions in southern Alberta,” Bandara says. “Then I talked to several growers and Patrick Fabian [of Fabian Seed Farms in Tilley, Alta.], who has been conducting some soybean research himself, encouraged me to submit a research proposal on soybean.” That led to Bandara’s current four-year research project on irrigated soybean production, which runs from 2014 to 2017. The project has four components. The first is evaluating new soybean varieties and lines. The second is assessing various production practices, such as seeding density, row spacing, root nodulation, and irrigation scheduling. The third is comparing the benefits of soybean versus dry bean production and the final one is testing the most promising agronomic treatments from the small-plot experiments under field-scale production. Variety evaluations The variety trials in Bandara’s current project are taking place under supplementary irrigation in Brooks, Medicine Hat, Bow Island and Lethbridge, Alta. Each year, his team is testing 16 to 18 Roundup Ready varieties and three conventional varieties. The seed companies participating in the trials select which of their latest varieties/lines they would like to include in the testing. The conventional varieties are all older varieties. Bandara’s team is collecting data on such traits as pod clearance, yield, days to maturity, and heat units to identify which varieties/lines have the best traits for commercial production in southern Alberta. Pod clearance refers to the height above the ground of the lowest pod on a plant. “Soybean plants produce their heaviest seed in their lowest pods. To be able to harvest those good, heavy seeds, the varieties need high pod clearance. I would say the lowest pod on the plant should be at least six centimetres above the ground,” he notes. As well, the varieties must be high yielding. Bandara explains that if soybean is going to find a place within irrigated rotations in southern Alberta, it has to be at least as profitable as well-established irrigated crops like corn, dry bean and sugar beet. The project is targeting soybean varieties that yield more than 4,000 kg/ha (60 bu/ac) in the small-plot trials; under farm field production, the actual yields would be somewhat lower. A few of the varieties in the trials are meeting that target and Bandara has heard some irrigation farmers in southern Alberta are getting close to 60 bu/ac with certain varieties. Early maturity is also essential. Soybean maturity can be described in various ways including: maturity group (a rating based mainly on day length, but also influenced by temperature); the number of crop heat units (CHU) needed to take the variety to maturity; and the number of frost-free days needed for maturity. Most of the soybeans in Bandara’s trials are in the 00 maturity group, which includes early- and mid-season varieties for the Prairies. One of the interesting findings from this work is that not only are the total CHUs important, but when those CHUs occur is also key. “We broke down the heat unit requirement based on the crop’s phenological stages [growth stages]. We found that heat units received during flowering, pod set and post-flowering are critical for higher seed yields,” Bandara explains. “We have to determine when a variety is flowering and what heat units it will be receiving. So it is not just the variety itself, but how it matches with the local growing conditions.” AAF plant pathologist Mike Harding is monitoring the varieties for disease, but very little has occurred in the trials. Bandara’s results so far show that, when soybeans are seeded in the second or third week of May, the varieties that mature within 116 to 121 days under southern Alberta conditions will be the highest yielding, good quality varieties for the region. Seeding density, row spacing “Soybean is such a new crop for Alberta that little information is available on agronomic questions that new growers would be asking about,” Larney says. His project aims to find answers to some of those questions. Larney is collaborating on the project with Bandara and Doon Pauly, an agronomy research scientist with AAF. Tram Thai, a master’s student at the University of Lethbridge, is also working on the project under the supervision of Larney and James Thomas with the university’s department of biological sciences. One of the studies in Larney’s project took place at Bow Island and Lethbridge from 2014 to 2016. It compared two row spacings (17.5 and 35 centimetres) and three seeding densities (30, 50 and 80 seeds per square metre, or seeds/m2) for the Roundup Ready soybean varieties NSC Tilston and Co-op F045R. Bandara chose the soybean varieties, picking two that had done well in his variety trials.   Larney’s team collected data on characteristics such as emergence, days to flowering, plant height at flowering, days to maturity, plant height at maturity, and pod clearance. They also measured yield components like pods per plant, seeds per plant, thousand seed weight, and seed yield, analyzed nitrogen uptake in the plants and estimated the amount of nitrogen returned to the soil from the aboveground crop residues. Data analysis is partially completed; Larney highlights some of the initial results from the 2014 and 2015 growing seasons. “The main effect was with the seeding density. When we averaged the data for both sites and both years, we saw a yield increase as the seeding density increased. At 30 seeds/m2, yields were between 2,200 and 2,400 kg/ha. At 50, we had 2,600 kg/ha and at 80 seeds/m2, we had almost 3,000 kg/ha, do there is a difference of about 600 to 800 kg/ha in yield response from the lowest to the highest seeding density.” He adds, “However, there is a trade-off between the yield from the extra seed and the cost of the extra seed.” The team is planning to do an economic analysis to find the economically optimum seeding density. Higher seeding densities also resulted in taller soybean plants with higher pod clearance. “Averaged over the two years at both sites, at 30 seeds/m2, the lowest pod height is five centimetres; at 50 seeds/m2, it is six centimetres; and at 80 seeds/m2, it is seven centimetres.” As well, higher seeding densities were associated with slightly earlier maturity and higher nitrogen levels in the grain and straw. Soybean disease wasn’t an issue, even in the denser plantings. The wider row spacing treatments had taller plants at flowering, better pod clearance, and slightly earlier maturity than the narrower treatments. Row spacing didn’t have a significant effect on yield. The Bow Island site had slightly higher heat units and about 10 fewer days to maturity than the Lethbridge site. However, the yields at Lethbridge were just as good as those at Bow Island. Soybean versus dry bean Larney’s and Bandara’s projects each have a study comparing soybean and dry bean production. Larney’s study, which is taking place at Bow Island and Lethbridge, looks at the nitrogen benefits of the two crops. “The current legume of choice under irrigation in Alberta is dry bean. The question is: would soybean acres be replacing dry bean acres? And, if so, what is the comparison between dry bean and soybean in terms of nitrogen carryover credits to the following crop in the rotation?” Larney says. This study’s fieldwork started in 2014 and will be completed in 2017. He explains, “In year 1 [in 2014, 2015, 2016], we plant soybean, dry bean and barley. In year 2 [in 2015, 2016, 2017], we plant wheat in those plots. We apply six different nitrogen rates on the wheat and look at the yield response.” The wheat crop’s nitrogen uptake is used as a measure of the nitrogen credit from the previous soybean and dry bean crops, with barley as a non-legume check crop. In addition, the project team is collecting other nitrogen-related data such as the spring and fall soil nitrate-nitrogen levels and the nitrogen uptake by the different crops in year 1. “I had always been told that, compared to other legumes, dry bean doesn’t fix that much nitrogen that is carried over to the subsequent crop, so I had thought soybean would be better than dry bean,” Larney notes. For example, Jeff Schoenau from the University of Saskatchewan has reported that, in Western Canada, soybeans fix 40 to 140 pounds of nitrogen per acre (45 to 155 kg/ha), while dry beans fix five to 70 pounds (six to 78 kg) and alfalfa fixes 100 to 250 pounds (112 to 280 kg). Surprisingly, in Larney’s study, dry bean produced more nitrogen credits than soybean. “For example, in 2015, the nitrogen credits from dry bean were about two, to two and a half times greater than those from soybean. We had about 45 kg/ha of nitrogen from dry bean and about 20 kg/ha from soybean, averaged over Lethbridge and Bow Island. The results from 2016 also showed the nitrogen credits were higher for dry bean than soybean,” he says. Larney’s team is planning to determine the nitrogen budgets for the different treatments to get a better handle on how much is being fixed and how much is being carried over. Bandara’s study compares the profitability of soybean versus dry bean production. Once the field data collection is completed, Ron Gietz with AAF will do this economic analysis. Irrigation scheduling Another element of Bandara’s project is an irrigation scheduling study conducted at Brooks by Ted Harms, an AAF soil and water specialist. The study involved a Roundup Ready soybean variety and six different irrigation treatments: no irrigation (rain-fed); irrigation from flowering to pod set; irrigation from flowering to harvest; irrigation from pod set to harvest; irrigation from seeding to pod set; and fully irrigated, with irrigation from seeding to harvest. The study developed a cost-effective irrigation schedule. Bandara says, “When we looked at how the different treatments affected yield, we found that early irrigation doesn’t have much impact. The most important period for irrigation is at flowering and after flowering. If you provide good moisture after flowering, then you can have yields of 3,300 kg/ha, compared to 3,500 kg/ha when fully irrigated.” Field-scale trial and more Bandara’s team is currently working with Fabian on a field-scale irrigation and seeding density study. On Fabian’s farm, they are testing the most promising treatments from the small-plot studies to see if any adjustments might be needed when using the practices on farms. Once all the studies in Bandara’s and Larney’s projects are completed, the researchers will prepare a production manual for supplementary irrigated soybean. “At the end of the projects, we will be able to provide good insight into soybean production under supplementary irrigation in southern Alberta,” Bandara says. Bandara’s project is primarily funded through Alberta’s Agriculture Funding Consortium; the contributing agencies include the Alberta Pulse Growers, Alberta Innovates Bio Solutions, Alberta Crop Industry Development Fund, and Country Commodities Ltd., a soybean meal processing company in Lethbridge. The main funders for Bandara’s variety evaluation work are the seed companies that provide the varieties for testing. Funding for Larney’s project is from AAFC’s Pulse Science Cluster with matching funds provided by the Manitoba Pulse and Soybean Growers, and from Growing Forward 2. Bandara is hoping to continue the soybean variety evaluation work after 2017, provided funding support from the seed companies is available. As well, he hopes to tackle some other soybean research topics. He notes that Alberta soybean growers are asking for research on white mould (Sclerotinia), which is likely to be a threat to soybean crops, especially under irrigation, and for research on rain-fed soybean production in the Dark Brown soil zone using newly available 000 very early maturing soybean varieties.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Latest Events

GrainTalk Research Days
Thu Aug 16, 2018 @ 8:30AM - 04:15PM
Open Farm Days
Sat Aug 18, 2018 @10:30AM - 02:00PM
Middlesex Soil and Crop Summer Tour
Tue Aug 21, 2018 @ 4:30AM - 09:00PM
Hastings County Plowing Match and Farm Show
Wed Aug 22, 2018 @ 9:00AM - 05:00PM
OMAFRA Soil Management Day
Wed Aug 22, 2018 @ 9:00AM - 03:00PM
Canada's Outdoor Farm Show
Tue Sep 11, 2018 @ 8:00AM - 05:00PM

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.