Field Crops
The Canadian Seed Trade Association (CSTA) celebrates Canada’s first national Agriculture Day (February 16th, 2017) with the launch of its Better Seed, Better Life program.

Seed is the start of it all, the entire agriculture and agri-food value chain. Through Better Seed, Better Life, CSTA plans to engage with Canadians on the role of seed as the foundation for the foods and drinks we enjoy, the clothes we wear and the fuel in our cars. This program is based on materials created by the American Seed Trade Association and is a collaborative effort between the two associations. 

CSTA’s Better Seed, Better Life program starts with the launch of the fact sheet, “The A to Z of Garden Seeds.” This is the first of a series of fact sheets to be released over the next months, connecting the seeds produced by CSTA members and the crops grown from those seeds to the products used in everyday life. The fact sheets are available at cdnseed.org. Profiles of CSTA members and a video will be added over the year to complement the fact sheets.
Published in Seeding/Planting
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.

At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.

While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.

The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences.

"The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
Published in Precision Ag
Syngenta Canada has announced the new Trivapro fungicide to barley growers across Western Canada, providing broad-spectrum leaf disease control. Trivapro is the first foliar fungicide on the market to combine three powerful active ingredients and three modes-of-action.

The product contains propiconazole (Group 3), a curative fungicide that acts on already-present disease to halt further infection, azoxystrobin (Group 11), a preventative fungicide that provides disease protection by moving into new growth, and Solatenol, a powerful Group 7 succinate deyhydrogenase inhibitor (SDHI) fungicide. The unique chemistry in Solatenol allows it to bind to the waxy layer of the entire leaf, where it is absorbed slowly over time to provide long-lasting residual protection.

Syngenta research trials show Trivapro to be highly effective on key cereal diseases, including barley scald, tan spot and net and spot blotch, while providing improvement in yield potential. 

Trivapro also demonstrates superior performance on major rusts, including leaf rust (Puccinia hordei), stem rust (P. graminis) and stripe rust (P. striiformis).

The Trivapro co-pack should be applied once at early flag leaf timing. Growers should consult the Trivapro product label for additional information.

In addition to being registered on barley, wheat and oats, Trivapro is also registered for use in corn and soybeans to protect against several foliar diseases, including Northern corn leaf blight and grey leaf spot in corn, and Septoria brown spot and frogeye leaf spot in soybeans.

Trivapro fungicide will be available in spring 2017 as a 40-acre co-pack or 400-acre bulk co-pack.
Visit syngenta.ca to learn more. 
Published in Fungicides
A popular fertilizer for farmers is urea, a nitrogen-rich organic compound found in human urine. Urea is water soluble and volatile, which means that irrigation or a heavy rains often sweeps it away in surface run-off or it escapes as a gas before it can be absorbed by plants.
Published in Fertilizer
We've just released another block of tickets to the SOLD OUT Field Crop Disease Summit, taking place Feb. 21 and 22 in Saskatoon. There are only 48 spaces available, so sign up now at topcropsummit.com. Once the tickets are gone, they're gone! 
Published in Corporate News
Soybean production has rapidly expanded in Manitoba in the past few years and there is increasing interest in Saskatchewan and Alberta. If you can successfully grow soybean, it is a great crop to include in your rotation and farm management program.
Published in Soybeans

There are two confirmed sightings of the brown marmorated stink bug in B.C. One found in Kelowna, the second in Penticton.

“These bugs look for warm wintering sites in the fall and winter, so usually the first detections are by homeowners,” says Paul Abram, a federal research scientist with Agriculture and Agri-Food Canada.

He said though there have been confirmed sightings in the Okanagan, it's difficult to estimate how many of the invasive bugs may already be in the province.

The bugs have previously caused damage in Pennsylvania field crops like sweet corn, field corn and soybeans. 

Abram says the province plans to focus efforts this summer on understanding how many bugs are already here and how to manage them. | READ MORE

Published in Corporate News
Growers in Western Canada now have new options for controlling the most damaging diseases with the registration of Hornet fungicide and label updates for INTEGO Solo seed treatment from Nufarm Agriculture Inc.
Published in Fungicides
Stripe rust could show up with a vengence in Ontario again this year, but that doesn’t mean we’re lacking the tools to control the problem.

Last year was one of the worst stripe rust years that Albert Tenuta, field crop extension plant pathologist with the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), has seen. Tenuta addressed the latest on where, when, and how often to apply fungicides to a room of farmers and agronomists at the Southwest Agriculture Conference, which took place Jan. 4 and 5 in Ridgetown, Ont. One of the diseases of focus was stripe rust and whether we can expect to see the same levels of the disease as last year.

Stripe rust typically thrives when temperatures sit around 16 C. But last year rust was exploding and multiplying in elevated nighttime temperatures sitting around 21 to 23 C. This may mean that the pathogen is changing in stripe rust.

“We’re seeing more and more races developing, becoming more heat tolerant,” Tenuta says. “They are living organisms that adapt and change, so nothing stays static over time.”

Since stripe rust is an obligate parasite (the disease needs a host to survive), the rust retreats back to the south in the U.S. in the winter, where there is greenery. With the milder winter last year, it’s likely spores are overwintering closer to Ontario, meaning the spores don’t need to travel as far and making it easier for them to reproduce. As millions and millions of spores are created, there are mutants that can develop and bypass resistance (from temperatures, for example) leading to an increase in cases of the disease.

If stripe rust had overwintered in the province, farmers would have seen it much earlier than the first reports in early May. This year, if conditions are right, we could potentially see the disease back in the province; it depends on the direction of wind as well as temperatures.

If the disease shows up again this year, there are two main ways for farmers to protect their crops. The first is well-timed application of fungicide. According to Martin Chilvers, assistant professor at Michigan State University and co-speaker at the session, in 2016 the most successful applications were the T2, or prior to flowering, applications. With applications at this stage, researchers were able to protect 20 bushels. Strobilurins and triazole compounds are best if applied as a preventative measure for stripe rust, although triazole also shows some post-infection functions as well.

Choosing a stripe-resistant variety is also important – even if it’s a moderately resistant variety. “Although you still see some disease developing, those lesions are often smaller, so they don’t produce as many spores,” Tenuta says. Therefore, spore production is reduced and successive generations decrease substantially.

But, Tenuta cautions, it’s still important to choose a variety that protects against Fusarium first and foremost. “Remember, Fusarium head blight is a risk you have every year. Stripe rust may occur – it may not.” Keep a lookout for stripe rust in your crops starting in May.
Published in Diseases
A team led by Agricultural Research Service (ARS) soil scientist Jeffrey Herrick has developed an innovative cloud computing platform and suite of mobile apps. The Land-Potential Knowledge System (LandPKS) “identifies (and in the near future will deliver) knowledge relevant to specific soils to anyone with a mobile phone,” says Herrick, who is based at the ARS Range Management Research Unit in Las Cruces, New Mexico.

The LandPKS mobile app, which includes the LandInfo and LandCover modules, taps cloud computing, digital and traditional soil-mapping, and GPS data to provide information on the sustainable potential of land under current and future climate conditions.

The current version of the LandInfo module allows the user to collect soil and site topographic data, while the LandCover module is used to document ground cover, vegetation height, plant density, and spatial patterns of vegetation affecting soil erosion. Domestic and international development organizations and land-management agencies are already using the app to crowd-source the local information needed to inform management decisions.

Read the full story here.
Published in Corporate News
Generally researchers try to stay ahead of farming practices, but lately they find themselves chasing an explanation for an emerging one.
Published in Seeding/Planting
Farmers in P.E.I. have the warm fall weather to thank for the extended seeding season of winter wheat and other cover crops. One farmer said he was able to plant more than 1,600 acres of cover crops to help with his crop rotation in the spring. | READ MORE
Published in Other Crops
December 23, 2016 – Results are in for the 2016 Canola Performance Trials (CPT). Data from the science-based, third-party variety evaluations for both small-plot and field-scale trials have now been uploaded to the online comparison tool at canolaperformancetrials.ca.

The searchable database now includes six years of data on yield, height, lodging and days to maturity, covering a wide range of growing season conditions. Online tools include interactive maps and the ability to refine searches by province, season zone (short, mid or long), herbicide tolerance (HT) system or trial type (small plot or field scale). Data can be viewed by searching all varieties or as a comparison between specific varieties (displaying either all available data for each or a head-to-head comparison).
Published in Canola
Douglas Cook at New York University and colleagues from the University of Nebraska are using special microphones to listen to corn plants in order to determine what leads to wind-induced corn stalk failure. It turns out, the sounds stalks make just before failure are very similar to the sounds made when breaking. "We now think that plant growth involves millions of tiny breakage events, and that these breakage events trigger the plant to rush to 'repair' the broken regions. By continuously breaking and repairing, the plant is able to grow taller and taller," says Cook. It's an idea that mimics the science behind how human muslces are built: Muscles are strengthened when tiny microtears are repaired after lifting weights. Although most of the work is still in the early stages, this marriage of mechanical engineering and plant science and the information gathered so far can help plant breeders design optimal, strong plants. | READ MORE 
Published in Corn
Research suggests turbines used to capture wind energy may have a positive effect on crops. Gene Takle, professor of agronomy and geological and atmospheric sciences at Iowa State University, says tall wind turbines disbursed throughout a field create air turbulence that may help plants by affecting variables such as temperature and carbon dioxide concentrations. | READ MORE
Published in Corporate News
If the conditions of the Dust Bowl were replicated today, modern agriculture would be devastated, according to scientists at the University of Chicago. Researchers analyzed how extreme drought and heat would affect maize, soy and wheat crops in the United States. The results show conditions similar to the 1930s would drastically reduce modern crop yields. | READ MORE
Published in Corporate News
Cool but dry conditions prevailed for the start of the corn growing season as May transitioned from a cooler than average April. May remained dry, with few precipitation events to delay planting. A few localized pockets in southern Ontario were the exception, which received regular rainfall during the first half of the month. Planting started in earnest in many areas during the middle to end of the first week of May and progressed quickly once started. Planting conditions were generally good, although some growers on heavier textured soils reported that slow drying of subsoils were holding off early planting until ground conditions were more fit. Planting was nearing completion in many areas by the end of the following week (May 14), but continued on some heavier textured soils as well as those areas that had been receiving rainfall. Statistics Canada estimated that 2.0 million acres of grain corn and 0.250 million acres of silage corn were planted in Ontario in 2016.

While lingering cool soil temperatures slowed development of the earliest planted corn, emergence was generally good for most fields. With the lack of rainfall in May, corn that had been planted when parts of fields were not quite fit or had not been fully planted into moisture may have struggled to emerge or emerged late. While generally minor overall, this resulted in variability in some fields. Some growers on heavier soils reported emergence issues following the cool weather and rainfall of May 14-15th. A small amount of replanting was reported to have occurred.

The annual OMAFRA Pre-Sidedress-Nitrate-Test (PSNT) survey was conducted at the V3-V4 stage on June 6-7th. With an overall average soil nitrate concentration of 11.2 ppm, levels were average to slightly higher than average. Given the lack of rainfall and low potential for soil saturation during May and June, nitrate losses from leaching or denitrification were unlikely. Below average precipitation in June maintained a wide window for weed control and sidedress nitrogen applications. With the exception of some moisture stress appearing on soils with poor water holding capacity in the drier parts of the province, the corn crop generally looked good and uniform through the end of June.

While some parts of the province received rain in July, many areas continued to be below normal, particularly the Bruce-Grey, Niagara and Central Ontario regions. Fields or parts of fields in these regions were beginning to show signs of moisture stress as corn leaves would wrap. There were some concerns as corn entered the moisture-sensitive tassel and pollination stages during the hot and dry conditions around the week of July 18. Some localized areas received thunderstorm related precipitation around this period.

During grain fill, there were reports of “tip-back” where several rows on the cob tips failed to pollinate and silks remained green. Warm temperatures continued to push crop development. As corn continued the grain filling process, significant rainfall events started to occur during August, with monthly precipitation totals ranging between 100-200 per cent of normal for large portions of the province. Despite this, leaf diseases, where present, typically remained at low levels. Between timely planting and above average heat unit accumulation, there were few concerns about crop maturity as August came to a close.

Silage harvest started in earnest in many areas during the week of September 12, with the exception of some early harvesting of moisture stressed crops. September remained generally dry, which resulted in good silage harvest conditions. Some reported whole plant moisture being drier than what had been anticipated at the start of harvest. Yields were reported to be below average in areas with little rainfall and on soils with poor water holding capacity, while yields in other areas were reported to be average. Lab analysis results suggested vomitoxin levels in silage were higher than normal. 

The annual OMAFRA grain corn vomitoxin survey was conducted from September 23 to 30th. The survey indicated elevated vomitoxin levels with 26 per cent of samples testing above two ppm. Long-term averages for this category run between five and 10 per cent, suggesting some extra monitoring for grain management and feeding may have been required in 2016. Risks may have been elevated from the wet and humid conditions that persisted from August to early September. Poorer pollination of ear tips which resulted in silks remaining green and husk tips that tended to remain tight may have also contributed to this. Western bean cutworm feeding that opened husks for mould establishment was prevalent in many areas as well. The incidence of samples testing higher for vomitoxin decreased east of Toronto.

As the growing season came to a close, heat unit accumulation ranged from average to 100-200 Crop Heat Units (CHU) higher than normal. Coupled with dry weather, corn harvest started early with some combining beginning as early as the last week of September. Harvest started in earnest around October 15, and progressed quickly as dry conditions prevailed for most of the province, resulting in a wide harvest window. Most growers reported moisture levels lower than what was typical for the time of year, and excellent test weights. With the exception of some localized pockets where soybean harvest was delayed, harvest was wrapping up in most areas by the end of the first week of November. Many growers reported yields that were above expectations considering the hot, dry growing season, with the exception of those on soils with poor water holding capacity, or regions which received well below average precipitation. As of December 14, Agricorp corn yields have been reported on 78 per cent of insured acres with an average yield of 167 bu/ac. This compares well to the 10 year average yield of 167 bu/ac for those reported acres.
Published in Corn
“When you’re trying to decide how much fertilizer to put down, you need a strategy,” says Horst Bohner, provincial soybean specialist with the Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA).

It might seem like a statement of the obvious, but right now, there’s no “obvious” strategy for maintaining nutrient levels in soil. In fact, there are multiple strategies, especially when it comes to nutrients such as phosphorous (P) and potassium (K).
A recently discovered group of endophytes – organisms that live within plants – is on the path to commercialization. Laboratory and field tests are showing the remarkable potential of these endophytes to provide diverse benefits, such as increased germination, greater tolerance of drought and higher yields, in many crops on the Prairies and around the world.
Published in Plant Breeding
Saskatchewan’s growing conditions aren’t exactly ideal for corn, a crop that loves heat and water. But with the development of shorter-season hybrids, an increasing number of Saskatchewan growers are trying corn for silage, grazing or even grain. Irrigation can play a key part in making corn production more successful.
Published in Irrigation
Page 1 of 96

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace