Field Crops
Diversified crop rotations are an important component of western Canadian cropping systems. Although crops like wheat and canola are the largest acreage crops, adding special crops into the rotation helps manage weed, disease and insect pest problems and potential resistance issues, improves soil health and maximizes profitability. However, determining which crop fits best in the cropping sequence remains a big question.
Published in Other Crops
Tree-based intercropping – growing trees together with crops – is a historical agricultural practice. These days primarily smallholder farmers use it in tropical systems, but researchers are focused on potential applications in the temperate soils of southern Ontario and Quebec.
Published in Other Crops
Send five soil test samples to five different labs and you’ll likely get five different recommendations. Understanding why will help you get the most out of your fertilizer dollars and optimize yields over the long term.
Published in Soil
New herbicide product registrations and label updates continue to bring more choice to farmers, with multiple modes of action to manage weed infestations and herbicide resistance. The following product information has been provided to Top Crop Manager by the manufacturers.
Published in Herbicides
Flash back to your first lesson in photosynthesis and you may recall stomata, the holes in the leaves of land-based plants through which they take in carbon dioxide and let out oxygen and water vapour. In the 400 million years since plants colonized the land, these holes have remained largely unchanged, save for one major exception: grasses.

Wheat field
Wheat and other edible grasses have developed pores that make them more drought tolerant. Stanford scientists have studied these pores with an eye toward future climate change.

These plants, which make up about 60 percent of the calories people consume worldwide, have a modified stoma that experts believe makes them better able to withstand drought or high temperatures. Stanford University scientists have now confirmed the increased efficiency of grass stomata and gained insight into how they develop. Their findings, reported in the March 17 issue of Science, could help us cultivate crops that can thrive in a changing climate.

“Ultimately, we have to feed people,” said Dominique Bergmann, professor of biology and senior author of the paper. “The climate is changing and, regardless of the cause, we’re still relying on plants to be able to survive whatever climate we do have.”

Adjusting an ancient system
Grasses – which include wheat, corn and rice – developed different stomata, which may have helped them spread during a prehistoric period of increased global dryness. Stomata usually have two so-called “guard cells” with a hole in the middle that opens and closes depending on how a plant needs to balance its gas exchange. If a plant needs more CO2 or wants to cool by releasing water vapour, the stomata open. If it needs to conserve water, they stay closed.

Grass stomata
The protein in yellow moves out of the guard cells into cells on both sides. By recruiting these cells, grass stomata become better suited to hot and dry environments.

Grasses improved on the original structure by recruiting two extra cells on either side of the guard cells, allowing for a little extra give when the stoma opens. They also respond more rapidly and sensitively to changes in light, temperature or humidity that happen during the day. Scientists hope that by knowing more about how grass developed this system, they may be able to create or select for edible plants that can withstand dry and hot environments, which are likely to become more prevalent as our climate changes.

“We take our food and agriculture for granted. It’s not something the ‘first world’ has to deal with, but there are still large areas of the world that suffer from famine and this will increase,” said Michael Raissig, a postdoctoral researcher in the Bergmann lab and lead author of the paper. “The human population is going to explode in the next 20 to 30 years and most of that is in the developing world. That’s also where climate change will have the biggest effect.”

Growing a better mouth
Scientists have assumed grasses’ unusual stomata make these plants more efficient “breathers.” But, spurred by curiosity and a passion for developmental biology, these researchers decided to test that theory.

Thanks to a bit of luck, they found a mutant of the wheat relative Brachypodium distachyon that had two-celled stomata. Partnering with the Berry lab at the Carnegie Institution for Science, the group compared the stomata from the mutant to the normal four-celled stomata. They not only confirmed that the four-celled version opens wider and faster but also identified which gene creates the four-celled stomata – but it wasn’t a gene they expected.

“Because it was a grass-specific cell-type, we thought it would be a grass-specific factor as well,” said Raissig, “but it’s not.”

Instead of relying on a completely new mechanism, the recruitment of the extra cells seems to be controlled by a well-studied factor which is known to switch other genes on and off. In other plants, that factor is present in guard cells, where it is involved in their development. In grasses, the team found that the factor migrated out of guard cells and directly into two surrounding cells, recruiting them to form the four-celled stomata.

Feeding the world
Over evolutionary time, humans have bred and propagated plants that produce the kinds of foods we like and that can survive extreme weather.

“We’re not consciously breeding for stomata but we’re unconsciously selecting for them,” said Bergmann, who is also a Howard Hughes Medical Institute investigator. “When we want something that’s more drought resistant, or something that can work better in higher temperatures, or something that is just able to take in carbon better, often what we are actually doing is selecting for various properties of stomata.”

The adaptability and productivity of grass makes understanding this plant family critical for human survival, the scientists said. Someday, whether through genetic modification or selective breeding, scientists might be able to use these findings to produce other plants with four-celled stomata. This could also be one of many changes – to chloroplasts or enzymes, for example – that help plants photosynthesize more efficiently to feed a growing population.
Published in Corporate News
Figuring out precisely how much nitrogen fertilizer Ontario farmers should apply to their grain corn is tricky business. For starters, nitrate – the form of nitrogen (N) in the soil that is readily available to plants – is highly mobile and susceptible to being leached away by rainfall. Therefore, the spring soil nitrate test that’s standard in Western Canada is not always useful in Eastern Canada, where rainfall tends to be heavier.
Published in Corn
The Cellulosic Sugar Producers Co-operative (CSPC) and its partners have almost finished putting all the pieces in place for a southern Ontario value chain to turn crop residues into sugars. Those pieces include a feasibility study, a technical-economic assessment and a collaboratively developed business plan. Some important steps still have to be completed, but they are aiming for processing to start in 2018.
Published in Biomass
For potato growers in Western Canada who are nervously watching the progress of potato psyllids (Bactericera cockerelli) moving in from the northwest United States, there’s good news: none of the potato psyllids found in Western Canada are carrying the zebra chip pathogen, Candidatus Liberibacter solanacearum (Lso). The Lso pathogen is transmitted by the potato psyllid, and zebra chip has caused severe damage in potatoes in the western United States, Mexico, Central America and New Zealand.
Published in Insect Pests
Field pea is generally thought to be relatively heat tolerant, but there are limits. Research by PhD candidate Yunfei Jiang in the department of plant sciences at the University of Saskatchewan is delving into how heat specifically affects pollination, seed set and the processes associated with pollen fertilizing an ovule to form an embryo and seed.  
Published in Seeding/Planting
The Canadian Seed Trade Association (CSTA) celebrates Canada’s first national Agriculture Day (February 16th, 2017) with the launch of its Better Seed, Better Life program.

Seed is the start of it all, the entire agriculture and agri-food value chain. Through Better Seed, Better Life, CSTA plans to engage with Canadians on the role of seed as the foundation for the foods and drinks we enjoy, the clothes we wear and the fuel in our cars. This program is based on materials created by the American Seed Trade Association and is a collaborative effort between the two associations. 

CSTA’s Better Seed, Better Life program starts with the launch of the fact sheet, “The A to Z of Garden Seeds.” This is the first of a series of fact sheets to be released over the next months, connecting the seeds produced by CSTA members and the crops grown from those seeds to the products used in everyday life. The fact sheets are available at cdnseed.org. Profiles of CSTA members and a video will be added over the year to complement the fact sheets.
Published in Seeding/Planting
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.

At the University of Georgia, a team of researchers is developing a robotic system of all-terrain rovers and unmanned aerial drones that can more quickly and accurately gather and analyze data on the physical characteristics of crops, including their growth patterns, stress tolerance and general health. This information is vital for scientists who are working to increase agricultural production in a time of rapid population growth.

While scientists can gather data on plant characteristics now, the process is expensive and painstakingly slow, as researchers must manually record data one plant at a time. But the team of robots developed by Li and his collaborators will one day allow researchers to compile data on entire fields of crops throughout the growing season.

The project addresses a major bottleneck that's holding up plant genetics research, said Andrew Paterson, a co-principal investigator. Paterson, a world leader in the mapping and sequencing of flowering-plant genomes, is a Regents Professor in UGA's College of Agricultural and Environmental Sciences and Franklin College of Arts and Sciences.

"The robots offer us not only the means to more efficiently do what we already do, but also the means to gain information that is presently beyond our reach," he said. "For example, by measuring plant height at weekly intervals instead of just once at the end of the season, we can learn about how different genotypes respond to specific environmental parameters, such as rainfall." | READ MORE
Published in Precision Ag
David Morris is not only secretary to the Ontario Corn Committee (OCC), which conducts the province’s annual hybrid corn performance trials. He’s also the committee’s “corporate memory,” having been involved for about 40 years.
Published in Corn
While most other crops have research dollars devoted to improving yield, pest and herbicide resistance, and input management, sorghum has been left behind in the move towards genetic improvements, better management options and pest reduction.
Published in Other Crops
Syngenta Canada has announced the new Trivapro fungicide to barley growers across Western Canada, providing broad-spectrum leaf disease control. Trivapro is the first foliar fungicide on the market to combine three powerful active ingredients and three modes-of-action.

The product contains propiconazole (Group 3), a curative fungicide that acts on already-present disease to halt further infection, azoxystrobin (Group 11), a preventative fungicide that provides disease protection by moving into new growth, and Solatenol, a powerful Group 7 succinate deyhydrogenase inhibitor (SDHI) fungicide. The unique chemistry in Solatenol allows it to bind to the waxy layer of the entire leaf, where it is absorbed slowly over time to provide long-lasting residual protection.

Syngenta research trials show Trivapro to be highly effective on key cereal diseases, including barley scald, tan spot and net and spot blotch, while providing improvement in yield potential. 

Trivapro also demonstrates superior performance on major rusts, including leaf rust (Puccinia hordei), stem rust (P. graminis) and stripe rust (P. striiformis).

The Trivapro co-pack should be applied once at early flag leaf timing. Growers should consult the Trivapro product label for additional information.

In addition to being registered on barley, wheat and oats, Trivapro is also registered for use in corn and soybeans to protect against several foliar diseases, including Northern corn leaf blight and grey leaf spot in corn, and Septoria brown spot and frogeye leaf spot in soybeans.

Trivapro fungicide will be available in spring 2017 as a 40-acre co-pack or 400-acre bulk co-pack.
Visit syngenta.ca to learn more. 
Published in Fungicides
A popular fertilizer for farmers is urea, a nitrogen-rich organic compound found in human urine. Urea is water soluble and volatile, which means that irrigation or a heavy rains often sweeps it away in surface run-off or it escapes as a gas before it can be absorbed by plants.
Published in Fertilizer
On-farm research networks provide an innovative opportunity for growers to conduct applied research to test products and practices on their farms. The Manitoba Pulse and Soybean Growers (MPSG) formed an on-farm research network in 2011 to address new challenges and help answer questions for growers. There were less than one million acres of soybeans at that time, but acreage keeps expanding with expectations of up to two million acres to be seeded in 2017.  
Published in Corporate News
Biofortification is the process by which the nutritional profile of a given food crop is improved through plant breeding. In Canada, the biofortification of pulse crops to improve micronutrient content (or “trace elements”) is becoming a major focus of breeding programs.
Published in Pulses
The Prairie Pest Monitoring Network (PPMN), now in its 20th year, continues to provide timely crop insect pest risk and forecasting tools for growers and the industry across Western Canada. As technology and forecasting tools advance, so does the ability of the network to provide relevant insect pest information related to scouting, identification and monitoring tools and information, plus links to provincial monitoring and support relevant to the Canadian Prairies.
Published in Consumer Issues
Breeders continue to focus on early maturing hybrids and bring a variety of stacked traits to western Canadian corn growers. Seed companies have supplied Top Crop Manager with the following information on the new corn hybrids for 2017. Growers are advised to check local performance trials to help in variety selection. The listing is by ascending crop heat units (CHU).
Published in Corn
We've just released another block of tickets to the SOLD OUT Field Crop Disease Summit, taking place Feb. 21 and 22 in Saskatoon. There are only 48 spaces available, so sign up now at topcropsummit.com. Once the tickets are gone, they're gone! 
Published in Corporate News
Page 1 of 97

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine

Most Popular

Marketplace